Chapter 5

Partitioning

Efficient designing of any complex system necessitates decomposition of the
same into a set of smaller subsystems. Subsequently, each subsystem can be
designed independently and simultaneously to speed up the design process.
The process of decomposition is called partitioning. Partitioning efficiency can
be enhanced within three broad parameters. First of all, the system must be
decomposed carefully so that the original functionality of the system remains
intact. Secondly, an interface specification is generated during the decomposi-
tion, which is used to connect all the subsystems. The system decomposition
should ensure minimization of the interface interconnections between any two
subsystems. Finally, the decomposition process should be simple and efficient
so that the time required for the decomposition is a small fraction of the total
design time.

Further partitioning may be required in the events where the size of a sub-
system remains too large to be designed efficiently. Thus, partitioning can be
used in a hierarchical manner until each subsystem created has a manageable
size. Partitioning is a general technique and finds application in diverse areas.
For example, in algorithm design, the divide and conquer approach is routinely
used to partition complex problems into smaller and simpler problems. The
increasing popularity of the parallel computation techniques brings in its fold
promises in terms of provision of innovative tools for solution of complex prob-
lems, by combining partitioning and parallel processing techniques.

Partitioning plays a key role in the design of a computer system in general,
and VLSI chips in particular. A computer system is comprised of tens of
millions of transistors. It is partitioned into several smaller modules/blocks
for facilitation of the design process. Each block has terminals located at the
periphery that are used to connect the blocks. The connection is specified by
a netlist, which is a collection of nets. A net is a set of terminals which have to
be made electrically equivalent. Figure 5.1 (a) shows a circuit, which has been
partitioned into three subcircuits. Note that the number of interconnections
between any two partitions is four (as shown in Figure 5.1(b)).

A VLSI system is partitioned at several levels due to its complexity. At

158 Chapter 5. Partitioning

the highest level, it is partitioned into a set of sub-systems whereby each sub-
system can be designed and fabricated independently on a single PCB. High
performance systems use MCMs instead of PCBs. At this level, the criterion
for partitioning is the functionality and each PCB serves a specific task within
a system. Consequently, a system consists of I/O (input /output) boards,
memory boards, mother board (which hosts the microprocessor and its asso-
ciated circuitry), and networking boards. Partitioning of a system into PCBs
enhances the design efficiency of individual PCBs. Due to clear definition of
the interface specified by the net list between the subsystems, all the PCBs
can be designed simultaneously. Hence, significantly speeding up the design
process.

If the circuit assigned to a PCB remains too large to be fabricated as a
single unit, it is further partitioned into subcircuits such that each subcircuit
can be fabricated as a VLSI chip. However, the layout process can be simplified
and expedited by partitioning the circuit assigned to a chip into even smaller
subcircuits. The partitioning process of a process into PCBs and an PCB into
VLSI chips is physical in nature. That is, this partitioning is mandated by the
limitations of fabrication process. In contrast, the partitioning of the circuit
on a chip is carried out to reduce the computational complexity arising due to
the sheer number of components on the chip. The hierarchical partitioning of
a computer system is shown in Figure 5.2.

The partitioning of a system into a group of PCBs is called the system level
partitioning. The partitioning of a PCB into chips is called the board level
partitioning while the partitioning of a chip into smaller subcircuits is called
the chip level partitioning. At each level, the constraints and objectives of the
partitioning process are different as discussed below.

o System Level Partitioning: The circuit assigned to a PCB must sat-
isfy certain constraints. Each PCB usually has a fixed area, and a fixed
number of terminals to connect with other boards. The number of ter-
minals available in one board (component) to connect to other boards
(components) is called the terminal count of the board (component). For
example, a typical board has dimensions 32 cmx15 cm and its terminal
count is 64. Therefore, the subcircuit allocated to a board must be man-
ufacturable within the dimensions of the board. In addition, the number
of nets used to connect this board to the other boards must be within
the terminal count of the board.

The reliability of the system is inversely proportional to the number of
boards in the system. Hence, one of the objectives of partitioning is to
minimize the number of boards. Another important objective is the op-
timization of the system performance. Partitioning must minimize any
degradation of the performance caused by the delay due to the connec-
tions between components on different boards. The signal carried by a
net that is cut by partitioning at this level has to travel from one board
to another board through the system bus. The system bus is very slow
as the bus has to adhere to some strict specifications so that a variety

159

0~

(b)

Figure 5.1: Partitioning of a circuit.

of different boards can share the same bus. The delay caused by signals
traveling between PCBs (off-board delay) plays a major role in determin-
ing the system performance as this delay is much larger than the on-board
or the on-chip delay.

¢ Board Level Partitioning: The board level partitioning faces a differ-
ent set of constraints and fulfills a different set of objectives as opposed
to system level partitioning. Unlike boards, chips can have different sizes
and can accommodate different number of terminals. Typically the di-
mensions of a chip range from 2 mmx2 mm to 25 mmx25 mm. The
terminal count of a chip depends on the package of the chip. A Dual
In-line Package (DIP) allows only 64 pins while a Pin Grid Array (PGA)
package may allow as many as 300 pins.

While system level partitioning is geared towards satisfying the area and
the terminal constraints of each partition, board level partitioning ven-
tures to minimize the area of each chip. The shift of emphasis is at-
tributable to the cost of manufacturing a chip that is proportional to its
area. In addition, it is expedient that the number of chips used for each
board be minimized for enhanced board reliability. Minimization of the

Partitioning

Chapter 5.

160

\\

N\

|

Figure 5.2: System hierarchy.

161

number of chips is another important determinant of performance because
the off-chip delay is much larger than the on-chip delay. This differential
in delay arises because the distance between two adjacent transistors on
a chip is afew pm while the distance between two adjacent chips is in
mm. In addition to traversing a longer distance, the signal has to travel
between chips, and through the connector. The connector used to attach
the chip to the board typically has a high resistance and contributes sig-
nificantly to the signal delay. Figure 5.3 shows the different kinds of delay
in a computer system. In Figure 5.3(b), the off-board delay is compared
with the on-board delay while the off-chip delay is compared with the
on-chip delay in Figure 5.3(c).

Chip Level Partitioning: The circuit assigned to a chip can be fabri-
cated as a single unit, therefore, partitioning at this level is necessary. A
chip can accommodate as many as three million or more transistors. The
fundamental objective of chip level partitioning is to facilitate efficient
design of the chip.

After partitioning, each subcircuit, which is also called a block, can be
designed independently using either full custom or standard cell design
style. Since partitioning is not constrained by physical dimensions, there
is no area constraint for any partition. However, the partitions may be
restrained by user specified area constraints for optimization of the design
process.

The terminal count for a partition is given by the ratio of the perimeter
of the partition to the terminal pitch. The minimum spacing between
two adjacent terminals is called ferminal pitch and is determined by the
design rules. The number of nets which connect a partition to other
partitions cannot be greater than the terminal count of the partition. In
addition, the number of nets cut by partitioning should be minimized to
simplify the routing task. The minimization of the number of nets cut
by partitioning is one of the most important objectives in partitioning.

A disadvantage of the partitioning process is that it may degrade the
performance of the final design. Figure 5.4(a) shows two components A
and B which are critical to the chip performance, and therefore, must be
placed close together. However, due to partitioning, components A and B
may be assigned to different partitions and may appear in the final layout
as shown in Figure 5.4(b). It is easy to see that the connection between
A and B is very long, leading to a very large delay and degraded perfor-
mance. Thus, during partitioning, these critical components should be
assigned to the same partition. If such an assignment is not possible, then
appropriate timing constraints must be generated to keep the two critical
components close together. Chip performance is determined by several
components forming a critical path. Assignment of these components to
different partitions extends the length of the critical path. Thus, a major
challenge for improvement of system performance is minimization of the
length of critical path.

162 Chapter 5. Partitioning

L ©

Figure 5.3: Different delays in a computer system.

5.1. Problem Formulation 163

(a) (b)

Figure 5.4: Bad partitioning increases the delay of circuit.

After a chip has been partitioned, each of the subcircuits has to be placed
on a fixed plane and the nets between all the partitions have to be in-
terconnected. The placement of the subcircuits is done by the placement
algorithms and the nets are routed by using routing algorithms.

At any level of partitioning, the input to the partitioning algorithm is a
set of components and a netlist. The output is a set of subcircuits which
when connected, function as the original circuit and terminals required for each
subcircuit to connect it to the other subcircuits. In addition to maintaining
the original functionality, partitioning process optimizes certain parameters
subject to certain constraints. The constraints for the partitioning problem
include area constraints and terminal constraints. The objective functions for
a partitioning problem include the minimization of the number of nets that
cross the partition boundaries, and the minimization of the maximum number
of times a path crosses the partition boundaries. The constraints and the
objective functions used in the partitioning problem vary depending upon the
partitioning level and the design style used. The actual objective function and
constraints chosen for the partitioning problem may also depend on the specific
problem.

5.1 Problem Formulation

The partitioning problem can be expressed more naturally in graph theo-
retic terms. A hypergraph G = (V, E) representing a partitioning problem can
be constructed as follows. Let V = {vi,vs,...,v,} be a set of vertices and
E = {e1,e2,...,em} be a set of hyperedges. Each vertex represents a com-
ponent. There is a hyperedge joining the vertices whenever the components
corresponding to these vertices are to be connected. Thus, each hyperedge is
a subset of the vertex seti.e., e; C V,i=1,2,...,m. In other words, each
net is represented by a hyperedge. The area of each component is denoted
as a{v;),1 < ¢ < n. The modeling of partitioning problem into hypergraphs
allows us to represent the circuit partitioning problem completely as a hyper-
graph partitioning problem. The partitioning problem is to partition V into

164 Chapter 5. Partitioning

Vi, Va,..., Vi, where
VinVi=¢, i#j
Uf:l‘/izv

Partition is also referred to as a cut. The cost of partition is called the cut-
size, which is the number of hyperedges crossing the cut. Let ¢;; be the cut-
size between partitions V; and V;. Each partition V; has an area Area(V;) =
Y vev, a(v), and a terminal count Count(V;). The maximum and the mini-
mum areas, that a partition V; can occupy, are denoted as AM®* and AM?,
respectively. The maximum number of terminals that a partition V; can have
is denoted as T;. Let P = {p1,p2,...,Pm} be a set of hyperpaths. Let H(p;)
be the number of times a hyperpath p; is cut, and let Kyjn and Kmax represent
the minimum and the maximum number of partitions that are allowed for a
given subcircuit.

The constraints and the objective functions for the partitioning algorithms
vary for each level of partitioning and each of the different design styles used.
This makes it very difficult to state a general partitioning problem which is
applicable to all levels of partitioning or all design styles used. Hence in this
section we will list all the constraints and the objective functions and the level
to which they are applicable. The partitioning problem at any level or design
style deals with one or more of the following parameters.

. Interconnections between partitions: The number of interconnec-
tions at any level of partitioning have to be minimized. Reducing the
interconnections not only reduces the delay but also reduces the interface
between the partitions making it easier for independent design and fab-
rication. A large number of interconnections increase the design area as
well as complicate the task of the placement and routing algorithms. Min-
imization of the number of interconnections between partitions is called
the mincut problem. The minimization of the cut is a very important
objective function for partitioning algorithms for any level or any style of
design. This function can be stated as:

kk
Oby, : Z ZC,‘J‘, (i #7) isminimized

i=1 j=1

o

2. Delay due to partitioning: The partitioning of a circuit might cause
a critical path to go in between partitions a number of times. As the
delay between partitions is significantly larger than the delay within a
partition, this is an important factor which has to be considered while
partitioning high performance circuits. This is an objective function for
partitioning algorithms for all levels of design. This objective function
can be stated mathematically as:

Obj, : max(H(p;)) is minimized
pi€P

5.1

Problem Formulation 165

. Number of terminals: Partitioning algorithms at any level must

partition the circuit so that the number of nets required to connect a
subcircuit to other subcircuits does not exceed the terminal count of the
subcircuit. In case of system level partitioning, this limit is decided by
the maximum number of terminals available on a PCB connector which
connects the PCB to the system bus. In case of board level partitioning,
this limit is decided by the pin count of the package used for the chips.
In case of chip level partitioning, the number of terminals of a subcircuit
is determined by the perimeter of the area used by the subcircuit. At
any level, the number of terminals for a partition is a constraint for the
partitioning algorithm and can be stated as:

Consy : Count(V;) <T;, 1<i<k

. Area of each partition: In case of system level partitioning, the

area of each partition (board) is fixed and hence this factor appears as
a constraint for the system level partitioning problem. In case of board
level partitioning, although it is important to reduce the area of each
partition (chip) to a minimum to reduce the cost of fabrication, there is
also an upper bound on the area of a chip, Hence, in this case also, the
area appears as a constraint for the partitioning problem. At chip level,
the size of each partition is not so important as long as the partitions are
balanced. The area constraint can be stated as:

Consy : AT™ < Area(Vi) < AP, i=1,2,...,k

. Number of partitions: The number of partitions appears as a con-

straint in the partitioning problem at system level and board level par-
titioning. This prevents a system from having too many PCBs and a
PCB from having too many chips. A large number of partitions may ease
the design of individual partitions but they may also increase the cost of
fabrication and the number of interconnections between the partitions.
At the same time, if the number of partitions is small, the design of these
partitions might still be too complex to be handled efficiently. At chip
level, the number of partitions is determined, in part, by the capability
of the placement algorithm. The constraint on the number of partitions
can be stated as,

Consz : Kpin < k < Kmax

Multiway partitioning is normally reduced to a series of two-way or bipar-
titioning problem. Each component is hierarchically bipartitioned until
the desired number of components is achieved. In this chapter, we will re-
strict ourselves to bipartitioning. When the two partitions have the same
size, the partitioning process is called bisectioning and the partitions are
called bisections.

166 Chapter 5. Partitioning

(a) (b)

Figure 5.5: A net represented as a clique and a spanning tree.

An actual model representing the partitioning problem to be solved at sys-
tem level or board level requires that the area constraint, interconnection con-
straint and constraint on the number of partitions be satisfied. Therefore,
constraints Cons;, Consz, and Conss apply. If the performance of the system
is also a criterion, then the objective function Obj, is also applicable. At chip
level, the partitioning algorithms usually have Obj, as an objective function.
In case of high performance circuits, objective function Obj, is also applicable.

An important factor, not discussed above, is modeling of a net. So far, we
have assumed that a net is modeled as a hyperedge. However, hyperedges are
hard to handle and the model is sometimes simplified. One way of simplifying
the model is to represent each hyperedge by a clique of its vertices. However
using this method increases the number of times the edges cross boundaries
substantially as shown in Figure 5.5(a). There are other ways to represent
hyperedges. For example, we can use a tree to represent a hyperedge as shown
in Figure 5.5(b), but doing this destroys the symmetric property of the clique
model. In general, net modeling is a hard problem and no satisfactory solution
has been proposed.

5.1.1 Design Style Specific Partitioning Problems

The problems formulated above represent a general approach to partition-
ing. However, partitioning algorithms for different design styles have different
objectives. In this section, we will discuss the partitioning problems for each
design style. Partitioning problems for FPGAs and MCM will be discussed in
Chapters 11 and 12, respectively.

1. Full custom design style: 1In a full custom design style, partitions
can be of different sizes and hence there are no area constraints for the
partitioning algorithms. Thus, the partitioning in full custom design
style has the most flexibility. During chip level partitioning, the number
of terminals allowed for each partition is determined by the perimeter

5.1

Problem Formulation 167

of the block corresponding to a partition. Thus, the estimated terminal
count for a partition i is given by

Di
d I
where, p; is the perimeter of the block corresponding to the partition ¢
and d is the terminal pitch. Since, the cost of manufacturing a circuit is
directly proportional to the layout size, it is essential to keep the area of
the layout to a minimum. The area of circuit layout is the sum of the areas
occupied by components, areas used for routing the nets, and the unused
areas. Since the areas occupied by the components are fixed, it is only
possible to minimize the routing areas and unused areas. The routing
area will be largely used by the nets that go across the boundaries of the
blocks. The amount of unused areas will be determined by the placement.
Therefore in addition to the terminal constraints, partitioning algorithms
have to minimize the total number of nets that cross the partition bound-
aries. A partitioning algorithm for full custom design has objective func-
tion Obj; subject to the constraints Cons; and Cons,. The full custom
design style is typically used for the design of high-performance circuits,
e.g., design of microprocessors. The delay for high-performance circuits is
of critical importance. Therefore, an additional objective function Obj,
is added to the partitioning problem for the full custom design style.

T, = i=1,2,....k

. Standard cell design style: The primary objective of the partitioning

algorithms in standard cell design style is to partition the circuit into a
set of disjoint subcircuits such that each subcircuit corresponds to a cell
in a standard cell library. In addition, the partitioning procedure is non-
hierarchical. The complexity of partitioning depends on the type of the
standard cells available in the standard cell library. If the library has only
a few simple cell types available, there are few options for the partitioning
procedure and the partitioning problem has to satisfy constraints Cons;
and Conss. However, if there are many cell types available, some of
which are complex, then the partitioning problem is rather complicated.
The objective function to be optimized by the partitioning algorithms for
standard cell design is Obj;. For high performance circuits, Obj; and
Obj, are used as combined objective functions.

. Gate array design style: The circuit is bipartitioned recursively until

each resulting partition corresponds to a gate on the gate array. The
objective for each bipartitioning is to minimize the number of nets that
cross the partition boundaries.

In future VLSI chips, the terminals may be on top of the chip and there-

fore terminal counts have to be computed accordingly. In addition, due to
ever-reducing routing areas, the transistors will get packed closer together and

168 Chapter 5. Partitioning

thermal constraints may become dominant, as they are in MCM partitioning
problems.

5.2 Classification of Partitioning Algorithms

The mincut problem is NP-complete, it follows that general partitioning
problem is also NP-complete [GJ79]. As aresult, variety of heuristic algorithms
for partitioning have been developed. Partitioning algorithms can be classified
in three ways. The first method of classification depends on availability of
initial partitioning. There are two classes of partitioning algorithms under this
classification scheme:

1. Constructive algorithms and

2. Iterative algorithms.

The input to a constructive algorithms is the circuit components and the
netlist. The output is a set of partitions and the new netlist. Constructive
algorithms are typically used to form some initial partitions which can be im-
proved by using other algorithms. In that sense, constructive algorithms are
used as preprocessing algorithms for partitioning. They are usually fast, but
the partitions generated by these algorithms may be far from optimal.

Iterative algorithms, on the other hand, accept a set of partitions and the
netlist as input and generate an improved set of partitions with the modified
netlist. These algorithms iterate continuously until the partitions cannot be
improved further.

The partitioning algorithms can also be classified based on the nature of
the algorithms. There are two types of algorithms:

1. Deterministic algorithms and

2. Probabilistic algorithms.

Deterministic algorithms produce repeatable or deterministic solutions. For
example, an algorithm which makes use of deterministic functions, will always
generate the same solution for a given problem. On the other hand, the prob-
abilistic algorithms are capable of producing a different solution for the same
problem each time they are used, as they make use of some random functions.

The partitioning algorithms can also be classified on the basis of the process
used for partitioning. Thus we have the following categories:

1. Group Migration algorithms,
2. Simulated Annealing and Evolution based algorithms and

3. Other partitioning algorithms.

5.3. Group Migration Algorithms 169

The group migration algorithms [FM82, KL70] start with some partitions,
usually generated randomly, and then move components between partitions to
improve the partitioning. The group migration algorithms are quite efficient.
However, the number of partitions has to be specified which is usually not
known when the partitioning process starts. In addition, the partitioning of
an entire system is a multi-level operation and the evaluation of the partitions
obtained by the partitioning depends on the final integration of partitions at
all levels, from the basic subcircuits to the whole system. An algorithm used
to find a minimum cut at one level may sacrifice the quality of cuts for the
following levels. The group migration method is a deterministic method which
is often trapped at a local optimum and can not proceed further.

The simulated annealing/evolution [CH90, GS84, KGV83, RVS84] algo-
rithms carry out the partitioning process by using a cost function, which clas-
sifies any feasible solution, and a set of moves, which allows movement from
solution to solution. Unlike deterministic algorithms, these algorithms accept
moves which may adversely effect the solution. The algorithm starts with a ran-
dom solution and as it progresses, the proportion of adverse moves decreases.
These degenerate moves act as a safeguard against entrapment in local min-
ima. These algorithms are computationally intensive as compared to group
migration and other methods.

Among all the partitioning algorithms, the group migration and simulated
annealing or evolution have been the most successful heuristics for partitioning
problems. The use of both these types of algorithms is ubiquitous and extensive
research has been carried out on them. The following sections include a detailed
discussion of these algorithms. The remaining methods will be discussed briefly
later in the chapter.

5.3 Group Migration Algorithms

The group migration algorithms belong to a class of iterative improvement
algorithms. These algorithms start with some initial partitions, formed by us-
ing a constructive algorithm. Local changes are then applied to the partitions
to reduce the cutsize. This process is repeated until no further improvement
is possible. Kernighan and Lin (K-L) [KL70] proposed a graph bisectioning
algorithm for a graph which starts with a random initial partition and then
uses pairwise swapping of vertices between partitions, until no improvement is
possible. Schweikert and Kernighan [SK72] proposed the use of a net model so
that the algorithm can handle hypergraphs. Fiduccia and Mattheyses [FM82]
reduced time complexity of K-L algorithm to O(t), where ¢ is the number of ter-
minals. An algorithm using vertex-replication technique to reduce the number
of nets that cross the partitions was presented by Kring and Newton [KN91].
Goldberg and Burstein [GB83] suggested an algorithm which improves upon
the original K-L algorithm using graph matchings. One of the problems with
the K-L algorithm is the requirement of prespecified sizes of partitions. Wei
and Cheng [WC89] proposed a ratio-cut model in which the sizes of the par-

170 Chapter 5. Partitioning

1 5
2 6
3 7
4 8
(a) Initial Bisections (b) Final Bisections

Figure 5.6: A graph bisected by K-L algorithm.

titions do not need to be specified. The algorithms based on group migration
are used extensively in partitioning VLSI circuits. In the following sections,
these algorithms are discussed in detail.

5.3.1 Kernighan-Lin Algorithm

The K-L algorithm is a bisectioning algorithm. It starts by initially par-
titioning the graph G = (V, E) into two subsets of equal sizes. Vertex pairs
are exchanged across the bisection if the exchange improves the cutsize. The
above procedure is carried out iteratively until no further improvement can be
achieved.

Let us illustrate the basic idea of the K-L algorithm with the help of an
example before presenting the algorithm formally. Consider the example given
in Figure 5.6(a). The initial partitions are

A=1{1,2,3,4}
B={5,6,7,8}

Notice that the initial cutsize is 9. The next step of K-L algorithm is
to choose a pair of vertices whose exchange results in the largest decrease of
the cutsize or results in the smallest increase, if no decrease is possible. The
decrease of the cutsize is computed using gain values D(7) of vertices v;. The
gain of a vertex v; is defined as

D(7) = inedge(i) — outedge(i)

where inedge(i) is the number of edges of vertex i that do not cross the bisection
boundary and outedge(?) is the number of edges that cross the boundary. The
amount by which the cutsize decreases, if vertex v; changes over to the other

5.3. Group Migration Algorithms 171

partition, is represented by D(i). If v; and v; are exchanged, the decrease of
cutsize is D(i) + D(j). In the example given in Figure 5.6, a suitable vertex
pair is (3, 5) which decreases the cutsize by 3. A tentative exchange of this pair
is made. These two vertices are then locked. This lock on the vertices prohibits
them from taking part in any further tentative exchanges. The above procedure
is applied to the new partitions, which gives a second vertex pair of (4, 6). This
procedure is continued until all the vertices are locked. During this process,
a log of all tentative exchanges and the resulting cutsizes is stored. Table 5.1
shows the log of vertex exchanges for the given example. Note that the partial
sum of cutsize decrease g(%) over the exchanges of first ¢ vertex pairs is given in
the table e.g.,g(1)= 3 and g(2) = 8. The value of & for which g(k) gives the
maximum value of all g(?) is determined from the table. In this example, k = 2
and g(2) = 8 is the maximum partial sum. The first k& pairs of vertices are
actually exchanged. In the example, the first two vertex pairs (3, 5) and (4, 6)
are actually exchanged, resulting in the bisection shown in Figure 5.6(b). This
completes an iteration and a new iteration starts. However, if no decrease of
cutsize is possible during an iteration, the algorithm stops. Figure 5.7 presents
the formal description of the K-L algorithm.

The procedure INITTALIZE finds initial bisections and initializes the pa-
rameters in the algorithm. The procedure IMPROVE tests if any improvement
has been made during the last iteration, while the procedure UNLOCK checks
if any vertex is unlocked. Each vertex has a status of either locked or unlocked.
Only those vertices whose status is unlocked are candidates for the next tenta-
tive exchanges. The procedure TENT-EXCHGE tentatively exchanges a pair
of vertices. The procedure LOCK locks the vertex pair, while the procedure
LOG stores the log table. The procedure ACTUAL-EXCHGE determines the
maximum partial sum of g(i), selects the vertex pairs to be exchanged and
fulfills the actual exchange of these vertex pairs.

The time complexity of Kernighan-Lin algorithm is O(n®). The Kernighan-
Lin algorithm is, however, quite robust. It can accommodate additional con-
straints, such as a group of vertices requiring to be in a specified partition. This
feature is very important in layout because some blocks of the circuit are to be
kept together due to the functionality. For example, it is important to keep all
components of an adder together. However, there are several disadvantages of
K-L algorithm. For example, the algorithm is not applicable for hypergraphs,
it cannot handle arbitrarily weighted graphs and the partition sizes have to
be specified before partitioning. Finally, the complexity of the algorithm is
considered too high even for moderate size problems.

5.3.2 Extensions of Kernighan-Lin Algorithm

In order to overcome the disadvantages of Kernighan-Lin Algorithm, several
algorithms have been developed. In the following, we discuss several extensions
of K-L algorithm.

172 Chapter 5. Partitioning

Algorithm KL
begin
INITTIALIZE();
while(IMPROVE(table) = TRUE) do
(* if an improvement has been made during last iteration,
the process is carried out again. *)
while (UNLOCK(A) = TRUE) do
(* if there exists any unlocked vertex in A,
more tentative exchanges are carried out. *)
for (eacha € A) do
if (a = unlocked) then
for(eachb € B) do
if (b = unlocked) then
if (Dmax < D(a) + D(b)) then
Diax = D(ﬂ') + D(b):
Omax = @,
bmax = b;
TENT-EXCHGE (amax, bmax);
LOCK(amaxybmax);
LOG(table);
Dax = —00;
ACTUAL-EXCHGE(table);
end.

Figure 5.7: Algorithm K-L

i | Vertex Pair | g(i) | Yi_, g(i) | Cutsize
0 : n 2 9
1 (3,5) 3 3 6
2 (4,6) 5 8 1
3 (1,7) -6 2 7
4 (2.8) 2 0 9

Table 5.1: The log of the vertex exchanges.

5.3. Group Migration Algorithms 173

5.3.2.1 Fiduccia-Mattheyses Algorithm

Fiduccia and Mattheyses [FM82] developed a modified version of Kernighan-
Lin algorithm. The first modification is that only a single vertex is moved across
the cut in a single move. This permits the handling of unbalanced partitions
and nonuniform vertex weights. The other modification is the extension of the
concept of cutsize to hypergraphs. Finally, the vertices to be moved across
the cut are selected in such a way so that the algorithm runs much faster. As
in Kernighan-Lin algorithm, a vertex is locked when it is tentatively moved.
When no moves are possible, only those moves which give the best cutsize are
actually carried out.

The data structure used for choosing the next vertex to be moved is shown
in Figure 5.8. Each component is represented as a vertex. The vertex (com-
ponent) gain is an integer and each vertex has its gain in the range —pmax to
+pmaz where pmax is the maximum vertex degree in the hypergraph. Since
vertex gains have restricted values, ‘bucket’ sorting can be used to maintain a
sorted list of vertex gains. This is done using an array BUCKET [-pmax, ...,
pmax], whose kth entry contains a doubly-linked list of free vertices with gains
currently equal to k. Two such arrays are needed, one for each block. Each
array is maintained by moving a vertex to the appropriate bucket whenever its
gain changes due to the movement of one of its neighbors. Direct access to each
vertex, from a separate field in the VERTEX array, allows removal of a vertex
from its current list and its movement to the head of its new bucket list in con-
stant time. As only free vertices are allowed to move, therefore, only their gains
are updated. Whenever a base vertex is moved, it is locked, removed from its
bucket list, and placed on a FREE VERTEX LIST, which is later used to reini-
tialize the BUCKET array for the next pass. The FREE VERTEX LIST saves
a great deal of work when a large number of vertices (components) have per-
manent block assignments and are thus not free to move. For each BUCKET
array, a MAXGAIN index is maintained which is used to keep track of the
bucket having a vertex of highest gain. This index is updated by decrementing
it whenever its bucket is found to be empty and resetting it to a higher bucket
whenever a vertex moves to a bucket above MAXGAIN. Experimental results
on real circuits have shown that gains tend to cluster sharply around the ori-
gin and that MAXGAIN moves very little, making the above implementation
exceptionally fast and simple.

The total run time taken to update the gain values in one pass of the above
algorithm is O(n), where 7 is the number of terminals in the graph G. The F-M
algorithm is much faster than Kernighan-Lin algorithm. A significant weakness
of F-M algorithm is that the gain models the effect of a vertex move upon the
size of the net cutsize, but not upon the gain of the neighboring vertices. Thus
the gain does not differentiate between moves that may increase the probability
of finding a better partition by improving the gains of other vertices and moves
that reduce the gains of neighboring vertices. Krishnamurthy [Kri84] has
proposed an extension to the F-M algorithm that accounts for high-order gains
to get better results and a lower dependence upon the initial partition.

174 Chapter 5. Partitioning

+pmax

MAX GAIN 4N =] veriea e T @5 [@]

-pmax

Vertex [| [@] []

Figure 5.8: The data structure for choosing vertices.

5.3.2.2 Goldberg and Burstein Algorithm

Experimental results have shown that the quality of the final bisection ob-
tained by iterative bisection algorithms, such as K-L algorithm, depends heavily
on the ratio of the number of edges to the number of vertices [GB83]. The K-
L algorithm yields good bisection if the ratio is higher than 5. However, if
the ratio is less than 3, the algorithm performs poorly. The ratio in a typical
problem of VLSI design is between 1.8 and 2.5. As a result, Goldberg and
Burstein suggested an improvement to the original K-L algorithm or other bi-
section algorithms by using a technique of contracting edges to increase that
ratio.

The basic idea of Goldberg-Burstein algorithm is to find a matching M
in graph G, as shown in Figure 5.9(a). The thick lines indicate the edges
which form matching. Each edge in the matching is contracted (and forms a
vertex) to increase the density of graph. Contraction of edges in M is shown
in Figure 5.9(b). Any bisection algorithm is applied to the modified graph and
finally, edges are uncontracted within each partition.

5.3.2.3 Component Replication

Recall that the partitioning problem is to partition V into Vi, V5,...,V}, such
that
VinVi=¢, i#j
Uf:l‘/i =V

In component (vertex) replication technique, the condition that
VinV=¢, i#j

is dropped. That is, some vertices are allowed to be duplicated in two or more
partitions. The vertex replication technique, presented by Kring and New-
ton [KNO91], can substantially reduce the number of nets that cross boundaries
of partitions. Figure 5.10(a) shows a partitioning of a circuit without vertex
replication. However, when the inverters are replicated, as in Figure 5.10(b),

5.3. Group Migration Algorithms 175

V34 V56
g V12 @" 7-8

Vi1-12 V910

V3 Vs

R\

JRAN

‘3%7
B

Yir Vo
e== Matching
(a) Matching of Graph (b) After Contracting

k|

Figure 5.9: Matching and edge contraction in graph.

the cutsize is reduced. When a component is replicated, it is copied into both
subcircuits and its output are generated locally and do not contribute to the
cutsize. Replication does require the inputs to the component to be available on
both sides of the partition. If inputs are not available on both sides, the inputs
must be propagated across the partition and will contribute to the cutsize.

Once a vertex has been replicated, it tends to remain so and nets connected
to the components remain in both subcircuits. Thus, while vertex replication
does reduce the cutsize, it tends to reduce the ability to further improve the
partition. To achieve good results with this technique, it is critical to limit
component replication to where it is most useful by actively limiting the number
of replicated components.

The replications of vertices must be done very carefully as in some situa-
tions, vertex replication may outweigh the benefit of a reduced cutsize. For
example, the added redundancy may increase the circuit area, fault rate and
testing. Also, vertex replication cannot be adopted by an arbitrary algorithm.
Only those algorithms which carry out partitioning at component level can
combine vertex replication techniques to reduce the cutsize. When vertex repli-
cation is used in algorithms which deal with more than one components at a
time [Kri84], the vertex replication technique can actually increase the cutsize.
However, there are cases, especially at the system level, where vertex repli-
cation is of great advantage. The algorithm has been tested for two types of
circuits, combinational circuits and industrial circuits. The results are summa-
rized in Table 5.2 in which the net cutsize reduction is the percentage reduction
in the total number of partitioned nets when compared to partitions obtained
without component replication. The component replication is the percentage
of the total number of replicated components to the total number of compo-

176 Chapter 5. Partitioning

Figure 5.10: Component replication to reduce the cutsize.

nents. Table 5.2 clearly shows that vertex replication can substantially reduce
the number of partitioned nets without significantly increasing the size of the
circuit.

5.3.2.4 Ratio Cut

The Kernighan-Lin algorithm yields partitions of comparable sizes, but these
sizes are predefined before partitioning. Since, there are natural clustering
structures in the circuit, predefining the partition size may not be well suited
for partitioning circuits, since there is no way to know the cluster size in circuits
before partitioning. To remedy this situation, Wei and Cheng proposed the
ratio cut as a new metric in order to locate natural clusters in the circuit and
at the same time force the partitions to be of equal sizes [WC89]. Given a
hypergraph G = (V, E), let ¢;; be the capacity of an edge connecting node
i and node j. Let (V1,Vs2) be a cut that separates a set of nodes Vj from its

complement Vawhere Vo = V —V). The capacity of this cut is equal to Cy,y, =
Yiev, 2 jev, Cij- The ratio of this cut Ry,y, is defined as Ry,y, = %’;—F‘z@—',

where |V1| and |V2|denote the cardinalities of subsets V; and V5 respectively.

5.4. Simulated Annealing and Evolution 177

Circuit Type | Maximum Circuit | Net Cutset | Component
Expansion Reduction | Replication
Combinational 10% 41% 3.2%
30% 43% 3.9%
Industrial 10% 15% 0.7%
30% 9% 0.3%

Table 5.2: Comparison of different design styles.

The ratio cut is the cut that generates the minimum ratio. The maximum
flow minimum cut method [FF62] prefers very uneven subsets which naturally
give the lowest cost. Instead of minimizing the cost Cv, v, the ratio cut based
approach minimizes the ratio Ry,y, to alleviate this hidden size effect. Cuts
that go through weakly connected groups and groups of similar sizes correspond
to smaller ratios. In this way, the minimization of all cuts according to their
corresponding ratios balances the effect of minimizing the cost and the effect
of keeping the resulting partitions of similar sizes.

Like many other partitioning problems, finding the ratio cut in a hyper-
graph belongs to the class of NP-complete problems [MS86]. Therefore, a good
and fast heuristic algorithm is needed. A heuristic based on Fiduccia and
Mattheyses algorithm was proposed in [WC89].

5.4 Simulated Annealing and Evolution

Simulated annealing and evolution belong to the probabilistic and iterative
class of algorithms. The simulated annealing algorithm for partitioning is the
simulation of the annealing process used for metals. As in the actual annealing
process, the value of temperature is decreased slowly till it approaches the
freezing point. The simulated evolution algorithm, simulates the biological
process of evolution. Each solution is called a generation. The generations
are improved in each iteration by using operators which simulate the biological
events in the evolution process.

5.4.1 Simulated Annealing

Simulated Annealing is a special class of randomized local search algorithms.
The optimization of a circuit partitioning with a very large number of compo-
nents is analogous to the process of annealing, in which a material is melted
and cooled down so that it will crystallize into highly ordered state. The en-
ergy within the material corresponds to the partitioning score. In an annealing
process, the solid-state material is heated to a high temperature until it reaches
an amorphous liquid state. It is then cooled very slowly according to a spe-
cific schedule. If the initial temperature is high enough to ensure a sufficiently

178 Chapter 5. Partitioning

Algorithm SA
begin
t = to;
cur_part = ini_part;
cur_score = SCORE(cur_part);
repeat
repeat
compl = SELECT(partl);
comp2 = SELECT (part2);
trial_part = EXCHANGE(compl, comp2, cur_part);
trial_score = SCORE(trial_part);
ds = trial_score — cur_score;
if (s < 0) then
cur_score = trial_score;
cur_part = MOVE(compl, comp2);
else
r = RANDOM(0, 1);
if (r < e~ %) then
cur_score = trial_score;
cur_part = MOVE(compl, comp?2);
until (equilibrium at ¢ is reached)
t=at (*0<a<l¥
until (freezing point is reached)
end.

Figure 5.11: Algorithm SA.

random state, and if the cooling is slow enough to ensure that thermal equilib-
rium is reached at each temperature, then the atoms will arrange themselves
in a pattern that closely resembles the global energy minimum of the perfect
crystal.

Early work on simulated annealing used Metropolis algorithm [MRRS53].
Since then, much work has been done in this field [CH90, GS84, KGV83,
RVS84]. Simulated annealing process starts with a random initial partition-
ing. An altered partitioning is generated by exchanging some elements between
partition. The resulting change in score, s, is calculated. If és < 0 (repre-
senting lower energy), then the move is accepted. If és > 0 then the move is
accepted with probability e~ . The probability of accepting an increased score
decreases with the increase in temperature 7. This allows the simulated anneal-
ing algorithm to climb out of local optimums in search for a global minimum.
This idea is presented as a formal algorithm given by Figure 5.11.

The SELECT function is used to select two random components, one from
each partition. These components are considered for exchange between the two

5.4. Simulated Annealing and Evolution 179

partitions. The EXCHANGE function is used to generate a trial partioning and
does not actually move the components. The SCORE function calculates the
cost for the new partitioning generated. If the cost is reduced, this move is
accepted and the components are actually moved using the MOVE function.
The cost evaluated by the SCORE function can be either the cutsize or a
combination of cutsize and other factors which need to be optimized. If the
cost is greater than the cost for the partitioning before the component was
considered for the move, the probability to accept this move is calculated using
the RANDOM function. If the move is accepted, the MOVE function is used
to actually move the components in between the partitions.

Simulated annealing is an important algorithm in the class of iterative,
probabilistic algorithms. The quality of the solution generated by the simulated
annealing algorithm depends on the initial value of temperature used and the
cooling schedule. Temperature decrement, defined above as at, is a geometric
progression where « is typically 0.95. Performance can be improved by using
the temperature decrementfunction, ¢ = te~%7t. However, initial temperature
and cooling schedule are parameters that are experimentally determined. The
higher the initial temperature and the slower the cooling schedule the better
is the result but time required to generate this solution is proportional to the
steps in which the temperature is decreased.

5.4.2 Simulated Evolution

Simulated Evolution is in a class of iterative probabilistic methods for com-
binatorial optimization that exploits an analogy between biological evolution
and combinatorial optimization.

In biological processes, species become better as they evolve from one gen-
eration to the next generation. The evolution process generally eliminates
the “bad” genes and maintains the “good” genes of the old generation to
produce “better” new generation. This concept has been exploited in iter-
ative improvement techniques for some combinatorial optimization problems
[CP86, KB89, SR90, SR89]. In this kind of approach, each feasible solution to
the problem is considered as a generation. The bad genes of the solution are
identified and eliminated to generate a new feasible solution.

In the following discussion, we present a simulated evolution method, Stochas-
tic Evolution (SE) developed by Saab and Rao [SR90]. SE is introduced as a
general-purpose iterative stochastic algorithm that can be used to solve any
combinatorial optimization problems whose states fit the certain state model
given below.

The state model is defined as follows. Given a finite set M of movable ele-
ments and a finite set L of locations, a state is defined as afunction S: M — L
satisfying certain state-constraints. Also, each state S has an associated cost
given by COST(S). The SE algorithm retains the state of lowest cost among
those produced by a procedure called PERTURB, thereby generating a new
generation. Each time a state is found which has a lower cost than the best
state so far, SE decrements the counter by R, thereby increasing the number

180 Chapter 5. Partitioning

of its iterations before termination. The general outline of the SE algorithm is
given in Figure 5.12.

PERTURB Procedure: In the biological processes, each gene of a specie in
the current generation has to prove its suitability under the existing environ-
mental conditions in order to remain unchanged in the next generation. The
PERTURB procedure implements this feature by requiring that each movable
element m € M in the current state S has to prove that its location S(m)
is suitable to remain unchanged in the next state of the algorithm. Using
the state function model described above, the moves are described as follows.
Given S and m € M, a move from § with respect to m is just a change in the
value of S(m), i.e., a move generates a new function S’ : M — L such that
S'(m) # S(m)while S§'(m') = S(m') forall m # m' € M. A move from a
state 5 generates a function S’ : M — L which may not be a state since it may
violate certain state-constraints. This function has to be converted into a state
before next iteration begins. The cost function should be suitably extended
to include such functions. During each call to PERTURB, the elements of the
set M of movable elements are scanned in some ordering. The choice of this
ordering is problem-specific.

When element m € M is being scanned, we assume S : M — L be the
existing function that may or may not satisfy the state-constraints. A unique
sub-move, which is a move from S, is associated with m that generates a
new function S’ : M — L such that §'(m) # S(m). The details of the sub-
move associated with m will be given in below for the partitioning problem.
Define Gain(m) = COST(S) - COST(S’) as the reduction in cost after the
sub-move is performed. The procedure PERTURB decides whether or not
to accept the sub-move associated with the element m. This decision is made
stochastically by using a non-positive control parameter p as follows. The value
of Gain{m) is compared to a integer r randomly generated in the interval [p, 0].
If Gain{m) > r,then the sub-move to.S’is accepted; otherwise, the sub-move is
rejected. Since r < 0, sub-moves with positive gains are always accepted. The
algorithm then scans the next element in M. The final function S generated
after scanning all elements of M may not satisfy the state-constraints of the
problem. In such a case, a function MAKE-STATE(S) is called to reverse the
fewest number of latest sub-moves accepted so that all the state-constraints
are satisfied. The outline of PERTURB procedure can be outlined as given by
Figure 5.12.

Some modifications to the above structure of PERTURB are possible. For
example, only a subset M’ of M may be scanned in order to save computation
time.

The UPDATE procedure: This procedure is used for updating the value of
the control parameter p. Initially, p is set to a negative value close to zero so
that only moves with small negative gains are performed. It has been observed
that moves with large negative gains tend to upset the optimization process
and only increase the running time of the algorithm. Hence, the value of p is

5.4. Simulated Annealing and Evolution 181

Algorithm SE
begin
S = Sp; (* initial state *)
SpesT = S; (* save initial state *)

P = po; (* initialize control parameter *)
v=0; (* initialize counter *)
repeat

Cpre = COST(S);
S = PERTURB(S, p);
Ceur = COST(S);
UPDATE(ps Cpre: Ccur)i
if (COST(S) < COST(Sgest)) then
Spest = S; (* save best state *)
vy=v—-R; (* decrement counter *)
else
vy=+v+1; (* increment counter *)
until (¥ > R); (* stopping criterion *)
return (Sggest); (* report best state *)
end.

Procedure PERTURB(S)
begin
for(each m € M) do
S’ = SUB-MOVE(S, m);
Gain(m) = COST(S) - COST(S");
if Gain(m) > RANDOM(p, 0)

S=9"%
S = MAKE-STATE(S);
return S;

end.

Procedure UPDATE(p, Cp,.,Ceur)

begin
if Cpre = Ccur then
p=p-1
else
P = Po;
end.

Figure 5.12: Algorithm SE.

182 Chapter 5. Partitioning

reduced only when necessary. During each iteration, the cost Ceyr of the new
state is compared to the cost Cpr. Of the previous state. If both costs are same,
p is decremented. Otherwise, p is reset to its initial value. The parameter p is
decremented to give the algorithm a chance to escape a local minimum via an
uphill climb. The procedure UPDATE is given in Figure 5.12.

Choice of R: The stopping criterion parameter R acts as the expected number
of iterations the SE algorithm needs to achieve the objective. The quality of
the final state obtained increases with the increase of R. If R is too large, then
SE wastes time during the last iterations because it cannot find better states.
On the other hand, if R is too small, then SE might not have enough time to
improve the initial state.

Let us now discuss the application of SE to partitioning. Using the state
model described above, movable elements of a state is the set of vertices, that
is M = V, and locations of states are the two partitions, that is, L = 1,2. A
partition therefore is a function S : V' — {1,2}, where the two partitions of the
vertex set are the subsets V3 and V,. A state (or a bisection) is a partition which
satisfy the state-constraint |V3| = |V2|. Then, the PERTURB procedure scans
the vertex set V in some order, i.e., if 4 and v are two vertices and u < v, then
u is scanned before v. The sub-move in PERTURB from S that is associated
with a vertex v € V is a move that transfers v from its current partition to
the other partition. More precisely, S'= SUBMOVE(S,v) is an onto function
such that §’(v) = 3 — S(v) representing that vertex v is transferred from one
partition to another partition and S’(u) = S(u) for all u # v representing
that all the location of other vertices remain unchanged. Note that S', in
general, represents a partition which may or may not be a bisection. After all
the vertices have been scanned and the decisions to make the corresponding
sub-moves have been made, the resulting function S may not be a state, which
means that it may not represent a bisection. Suppose |Vi| — |V2| = k > 0, then
MAKE-STATE(S) generates a state from S by reversing the last appropriate
k/2 sub-moves performed.

The time complexity of SE is proportional to the time required for the
computation of the sub-moves and gains associated with each movable element
of M. Suppose ¢ is an upper bound on the time required for each sub-move and
gain computation, then each iteration of SE runs in O(e¢ x {M]) time. Since ¢
is either a constant or is linear in the problem size, the SE algorithm for these
problems requires either linear or quadratic time per iteration.

The simulated evolution and simulated annealing algorithms are computa-
tion intensive. The key difference between these two kinds of algorithms is that
the simulated evolution uses the history of previous trial partitionings. There-
fore, it is more efficient than simulated annealing. However, it takes more space
to store the history of the previous partitioning than the simulated annealing.

5.5. Other Partitioning Algorithms 183

5.5 Other Partitioning Algorithms

Besides the group migration and simulated annealing/evolution methods,
there are other partitioning methods. In this section, we will present the metric
allocation algorithm. The references to other algorithms are provided at the
end of the chapter.

5.5.1 Metric Allocation Method

Initial work on measuring the connectivity with a metric was carried out by
Charney and Plato [CP68]. They showed that using electrical analog of the
network minimizes the distance squared between the components. Partition-
ing starts after all the values of the metric have been computed; these values
are calculated from eigenvalues of the network. This method is described by
Cullum, Donath, and Wolfe [CDW75].

The basic metric allocation partitioning algorithm starts with a set V of
the nodes and a set S = Sy, 853, ..., Sy of the nets. A metric value over V x V
is computed. Nodes in V are then partitioned into subsets Vi, Va,...., Vi such
that sum of the areas in Vj is less than or equal to A for all ¢ and the number of
nets with members both internal to V; and external to V; is less than 7 for all %,
where, A and T represent the area and terminal constraint for each partition,
respectively. The algorithm given in Figure 5.13 determines if a k-way partition
can be done to satisfy the requirements.

The function CONSTRUCT-ST is used to construct the spanning trees for
each net in the netlist. All the edges of these spanning trees are added to a
set L by using the function ADD-EDGES. The procedure SORT-ASCENDING
sorts L in an ascending order on the metric used. Each vertex v; is assigned
to a individual group G; by the function INITIALIZE_GROUPS. The groups
to which vertices v; and vy, joined by edge e;;, belong are collapsed to form
a single group if the area and terminal count restriction is not violated. The
merging process is carried out by MERGE-GROUPS. This routine also keeps
track of the order in which the groups are merged. The function AREA is
used to calculate area of a group while function COUNT gives the number of
terminals in a group. If such mergings of the groups reduce the number of
groups to K or less, the set of groups is returned by the algorithm. If after
merging all possible groups, if the number of groups is greater than K, then
the smallest group is selected by using function SELECT_SMALL. An attempt
is made to merge this group with another group which causes the least increase
in area and terminal count of the resulting group. If such a group is found the
flag merge_success is set to TRUE. The function STORE-MIN is used to store
the group which causes the smallest increase in area and terminal count. The
function RESTORE-MIN returns the group which is stored by STORE-MIN.
If the smallest group consists of only a single component and merge_success
is FALSE, the algorithm returns a null set indicating failure. If the smallest
group consists of more than one component and the merge_success flag is set to
FALSE, function SELECT_LARGE is used identify the largest group among

184 Chapter 5.

Algorithm METRIC-PARTITION
begin
for(i=1to N) do
CONSTRUCT-ST(S;);
ADD-EDGES(S;, L);
SORT-ASCENDING(L, metric);
no-groups = INITIALIZE-GROUPS(V);
while(L # ¢) do
e;; = SELECT-EDGE(L);
if((G; # G;) and
(AREA(G;) + AREA(G;) < A) and
(COUNT(G;) + COUNT(G;) <T))
MERGE-GROUPS(G;, G;);
no_groups = no-groups — 1;
if(no_groups < K)
return(G);
else
continue;
while(no_groups > K) do
G; = SELECT _ SMALL();
for(j = 1 to no_groups) do
if(i #j) and
(AREA(G;) + AREA(G;) < A) and
(COUNT(G;) + COUNT(G;) <T))
STORE-MIN(Gj;);
merge_success = TRUE;
MERGE-GROUPS(G;, RESTORE-MIN(G;));
if(no_groups < K)
return(G);
if(merge_success = FALSE)
if(SIZE(G;) =1)
return(¢);
else
G; = SELECT _ LARGE();
DECOMPOSE(Gj, Gk, G;);
end.

Figure 5.13: Algorithm METRIC-PARTITION.

Partitioning

5.6. Performance Driven Partitioning 185

all groups. This group is decomposed into two subgroups by using function
DECOMPOSE and procedure is repeated.

5.6 Performance Driven Partitioning

In recent years, with the advent of the high performance chips, the on-chip
delay has been greatly reduced. Typically on-chip delay is in the order of a few
nanoseconds while on-board delay is in the order of a few milliseconds. The
on-board delay is three orders of magnitude larger than on-chip delay. If a
critical path is cut many times by the partition, the delay in the path may be
too large to meet the goals of the high performance systems. The design of a
high performance system requires partitioning algorithms to reduce the cutsize
as well as to minimize the delay in critical paths. The partitioning algorithms,
which deal with high performance circuits, are called as timing (performance)
driven partitioning algorithms and the process of partitioning for such circuits
is called timing (performance) driven partitioning.

For timing driven partitioning algorithms, in addition to all the other con-
straints, timing constraints have to be satisfied. Discussion on these types of
partitioning problems for FPGAs can be found in Chapter 11. Timing driven
partitioning plays a key role in MCM design and will be discussed in Chap-
ter 12.

The partitioning problem for high performance circuits can be modeled
using directed graphs. Let G = (V, E) be a weighted directed graph. Each
vertex v; € V represents a component (gate) in the circuit and each edge
represents a connection between two gates. Each vertex v; has a weight GD(v;),
specifying the gate delay associated with the gate corresponding to v;. Each
edge (v;,v;) has a delay associated with it, which depends on the partitions to
which v;and v;belong. The edge delay, ED;; = (di,ds, ds)specifies the delay
between v; and v;. The delay associated with edge (wv;,v;)is d; if the edge is
cut at chip level. If the edge is cut at board level the delay associated with the
edge is d2 and it is ds if the edge gets cut at system level. This problem is very
general and is still a topic of intensive research.

A timing driven partitioning addresses the problem of clustering a circuit
for minimizing its delay, subject to capacity constraints on the clusters. The
early work on this problem was done by Stone [Sto66]. When the delay inside
a cluster is assumed to be negligible compared to the delay across the clusters,
then the following algorithm by Lawler, Levitt and Turner [LLT69], which uses
a unit delay model, can be used. The circuit components are represented by
a group of vertices or nodes and the nets are represented as directed edges.
Each vertex, v;, has a weight, W (v;), attached to it indicating the area of the
component. A label, L(v;), is given to each node, v;, to identify the cluster to
which the node belongs. The labeling is done as follows: All the input nodes are
labeled 0. A node, v;, all of whose predecessors have been labeled, is identified.
Let k& be the largest predecessor label, W P;(k) be the total weight of all the
k-predecessors, and M be the largest weight that can be accommodated in a

186 Chapter 5. Partitioning

Figure 5.14: Labeling Sequence and clusters formed.

cluster. If WP;(k) + W{(v;) < M, label of vertex v; is set to k, i.e., L(v;) = k,
otherwise, vertex v; gets the label, k + 1. After all the vertices are labeled, a
vertex, vj, is identified such that none of the successors of v; have the same
label as v;. The vertex v; and all its k-predecessors form a cluster. The vertex
v; is called the root of the cluster. Similar procedure is carried out till all the
vertices are clustered. This clustering mechanism may cause a vertex to be in
more than one cluster in which case it has to be replicated appropriately. The
label for any vertex v;,as defined above, is the maximum delay of the signal
when the signal reaches the vertex v; after assuming the delay inside a cluster
is zero. Thus the above model represents the minimization of the maximum
delay of signal under the area constraints when the delay inside a cluster is
assumed zero. Figure 5.14 shows a digraph representing a circuit. The number
above a vertex indicates the weight of the vertex while the number below a
vertex denotes the label of the vertex. M is set equal to 4. Clusters formed
are also shown in Figure 5.14.

The clusters (e.g., chips) have large capacities, and very likely, the criti-
cal path inside a cluster will be comparable to the total delay of the circuit.
Therefore, to be more general, it is better to use more realistic delay model. In
a general delay model, each gate of the combinational circuit has a delay as-
sociated with it. Considering this problem, Murgai, Brayton and Sangiovanni-
Vincentelli [MBV91] proposed an algorithm to reduce this delay. The key idea
is to label the vertices (gates) according to the clusters’ internal delay. Then
number of clusters is minimized without increasing the maximum delay. Mini-
mizing the number of clusters and vertices reduces the number of components
and hence the cost of the design. The number of clusters is minimized by
merging, subject to a capacity constraint.

5.7. Summary 187

5.7 Summary

Partitioning divides a large circuit into a group of smaller subcircuits. This
process can be carried out hierarchically until each subcircuit is small enough
to be designed efficiently. These subcircuits can be designed independently
and simultaneously to speed up the design process. However, the quality of the
design may suffer due to partitioning. The partitioning of a circuit has to be
done carefully to minimize its ill effects. One of the most common objectives
of partitioning is to minimize the cutsize which simplifies the task of routing
the nets. The size of the partitions should be balanced. For high performance
circuits, the number of times a critical path crosses the partition boundary has
to be minimized to reduce delay. Partitioning for high performance circuits is
an area of current research, especially so with the advent of high performance
chips, and packaging technologies.

Several factors should be considered in the selection of a partitioning al-
gorithm. These factors include difficulty of implementation, performance on
common partitioning problems, and time complexity of the algorithm. Group
migration method is faster and easier to implement. Metric allocation method
is more costly in computing time than group migration method, and hardest
to implement since it requires numerical programming. The results show that
simulated annealing usually takes much more time than the Kernighan-Lin
algorithm does. On a random graph, however, the partitions obtained by sim-
ulated annealing are likely to have a smaller cutsize than those produced by the
Kernighan-Lin algorithm. Simulated evolution may produce better partition
than simulated annealing, but it has larger space complexity. The algorithms
for bipartitioning presented in this chapter are practical methods. They are
mainly used for bipartitioning, but can be extended to multiway partitioning.

5.8 Exercises

1. Partition the graph shown in Figure 5.15, using Kernighan-Lin algorithm.
12. Extend Kernighan-Lin algorithm to multiway partitioning of graph.

3. Apply Fiduccia-Mattheyses algorithm for the graph in Figure 5.15 by
considering the weights for the vertices, which represent the areas of the
modules. Areas associated with the vertices are: v; = 10, vo = 12, v3 =
8, V4 = 15, Vg = 13, Vg = 20, v = 9, Vg = 7, Vg = 14 and V10 = 9. The
areas of the two partitions should be as equal as possible. Is it possible
to apply the Kernighan-Lin algorithm in this problem?

t4. For the graph in Figure 5.16, let the delay for the edges going across
the partition be 20 nsec. Each vertex has a delay which is given below.
Consider vertex v; as the input node and vertex vg as the output node.
Partition the graph such that the delay between the input node and

188

17.

Chapter 5. Partitioning

\”
2 V3

Figure 5.16: A delay minimization problem in graph partitioning.

output node is minimum and the partitions have the same size. The
delays for the vertices are d(v;) = 3 nsec, d(ve) = 2 nsec, d(vs) = 1 nsec,
d(v4) = 2 nsec, d(vs) = 3 nsec, d(vg) = 4 nsec, d(v7) = 3 nsec, d(vg) =
8 nsec, d(vg) = 7 nsec and d(v10) = 5 nsec.

. Apply the vertex replication algorithm to the graph given in Figure 5.16.

T6.

Implement Fiduccia-Mattheyses and the Kernighan-Lin algorithms for
any randomly generated instance, and compare the cutsize.

Implement the Simulated Annealing and Simulated Evolution algorithms
described in the text. Compare the efficiency of these two algorithms

on a randomly generated example. In what aspects do these algorithms
differ?

5.8. Exercises 189

Y6 Vi 8 Vo V10

Figure 5.17: A problem instance showing critical net.

8. Compare the performance of the Simulated Annealing algorithm for dif-
ferent values of a.

+9. Consider the tree shown in Figure 5.17, which represents a critical net.
Partition the tree into four partitions, two of which will be on one chip
and the other two partitions on another chip. Let the delay values of
each vertex be the same as that in problem 3. Let the interchip delay
be 20 nsec and the delay between the two partitions on the same chip be
10nsec. The objective is to partition the tree into four partitions such
that the longest delay path from the root of the tree to any of its leaves
is minimized and the number of vertices on each partition is as equal as
possible.

£10. Suggest modifications to the Kernighan-Lin algorithm to speed up the
algorithm.

+11. In the application of vertex replication technique, as the vertex replication
percentage increases, the cutsize decreases. However, at the same time,
the layout area increases as well. Is it possible to get a graph showing
the relation between cutsize and circuit area as the component replication
percentage varies? Use a randomly generated example. From your result,
can you obtain an optimal strategy such that the trade off between cutsize
and layout area is compromised?

+12. Implement the ratio cut algorithm. Is it possible to use the vertex repli-
cation technique in the ratio cut model?

Bibliographic Notes

Many other partitioning approaches have been proposed in solving circuit par-
titioning problems, such as network flow [FF62], and eigenvector decomposition
[FK86, Hal70] etc. The maximum flow minimum cut algorithm presented by

190 Chapter 5. Partitioning

Ford and Fulkerson [FF62] is an exact algorithm for finding a minimum cost
bipartitions for a network without considering the area constraints for the par-
titions. In many cases, e.g., system level partitioning, the partitioning problem
with objective to reduce the number of interconnections, does not represent the
actual problem because the area constraints are not considered in this model.
Certain algorithms simplify the partitioning problem by restricting the range
of the circuits that can be partitioned e.g., partitioning algorithms for pla-
nar graphs [Dji82, LT79, Mil84]. Partitioning problem in planar graphs has
been discussed in [LT79]. But clearly all circuits cannot be represented as
planar graphs. Hence, planar graph algorithms are not very practical in the
partitioning of VLSI circuits.

There is an interesting trend in which an interactive man-machine ap-
proach is used in solving partitioning problems. Interested readers should read
[BKM*66, HMW74, Res86]. A ‘Functional Partitioning’ which takes into ac-
count certain structural qualities of logic circuits, namely loops and reconverg-
ing fan-out subnets, can be found in [Gro75]. A new objective function to
reduce the number of pins was presented in [Hit70].

A partitioning which intends to form partitions with equal complexity,
e.g., similar in terms of area, yield and speed performance, was introduced
in [YKR87]. A partitioning model was formulated in which components are
assigned probabilities of being placed in bins, separated by partitions. The
expected number of nets crossing partitions is a quadratic function of these
probabilities. Minimization of this expected value forces condensation of the
probabilities into a ‘definite’ state representing a very good partitioning [Bia89].

A neural network model was proposed in [YM90] for circuit bipartition-
ing. The massive parallelism of neural nets has been successfully exploited to
balance the partitions of a circuit and to reduce the external wiring between
the partitions. A constructive partitioning method based on resistive network
optimization was developed in [CK84]. Another partitioning technique called
clustering was presented in [CB87, Joh67, McF83, McF86, Raj89, RT85]. The
simulated annealing algorithm described in this chapter, generates one move
at random, evaluates the cost of the move, and then accepts it or rejects it.
Greene and Supowit [GS84] proposed an algorithm whereby a list of moves is
generated and the moves are taken from the list by a random selection pro-
cess. In [CLB94] J. Cong, Z. Li, and R. Bagrodia present two algorithms in
the acyclic multi-way partitioning approach.

