Chapter 6

Floorplanning and Pin
Assignment

After the circuit partitioning phase, the area occupied by each block (sub-
circuit) can be estimated, possible shapes of the blocks can be ascertained and
the number of terminals (pins) required by each block is known. In addition,
the netlist specifying the connections between the blocks is also available. In
order to complete the layout, we need to assign a specific shape to a block and
arrange the blocks on the layout surface and interconnect their pins according
to the netlist. The arrangement of blocks is done in two phases; Floorplanning
phase, which consists of planning and sizing of blocks and interconnect and
the Placement phase, which assign a specific location to blocks. The inter-
connection is completed in the routing phase. In the placement phase, blocks
are positioned on a layout surface, in a such a fashion that no two blocks are
overlapping and enough space is left on the layout surface to complete the in-
terconnections. The blocks are positioned so as to minimize the total area of
the layout. In addition, the locations of pins on each block are also determined.

The input to the Floorplanning phase is a set of blocks, the area of each
block, possible shapes of each block and the number of terminals for each block
and the netlist. If the layout of the circuit within a block has been completed
then the dimensions (shape) of the block are also known. The blocks for which
the dimensions are known are called fixed blocks and the blocks for which
dimensions are yet to be determined are called flexible blocks. Thus we need to
determine an appropriate shape for each block (if shape is not known), location
of each block on the layout surface, and determine the locations of pins on the
boundary of the blocks. The problem of assigning locations to fixed blocks on
a layout surface is called the Placement problem. If some or all of the blocks
are flexible then the problem is called the Floorplanning problem. Hence, the
placement problem is a restricted version of the floorplanning problem. If one
asks for planning of the interconnect in addition to floorplanning, then it is
referred to as the chip planning problem . Thus floorplanning is a restricted
version of chip planning problem. The terminology is slightly confusing as

192 Chapter 6. Floorplanning and Pin Assignment

floorplanning problems are placement problems as well but these terminologies
have been widely used and accepted. It is desirable that the pin locations are
identified at the same time when the block locations are fixed. However, due
to the complexity of the placement problem, the problem of identifying the pin
locations for the blocks is solved after the locations of all the blocks are known.
This process of identifying pin locations is called pin assignment.

Chip planning, Floorplanning and Placement phases are very crucial in
overall physical design cycle. It is due to the fact, that an ill-floorplanned
layout cannot be improved by high quality routing. In other words, the overall
quality of the layout, in terms of area and performance is mainly determined in
the chip planning, floorplanning and placement phases. In this chapter we will
review Floorplanning and pin assignment algorithms. Algorithms for placement
will be discussed in the subsequent chapter.

There are several factors that are considered by the chip planning, floorplan-
ning, pin assignment and placement algorithms. These factors are discussed
below:

1. Shape of the blocks: In order to simplify the problem, the blocks are
assumed to be rectangular. The shapes resulting from the floorplanning
algorithms are mostly rectangular for the same reason. The floorplanning
algorithms use aspect ratios for determining the shape of a block. The
aspect ratio of a block is the ratio between its height and its width. Usu-
ally there is an upper and a lower bound on the aspect ratios, restricting
the dimensions that the block can have. More recently, other shapes such
as L-shapes have been considered, however dealing with such shapes is
computationally intensive.

2. Routing considerations: In chip planning, it is required that routing
is considered as an integral part of the problem. In placement and floor-
planning algorithms it maybe sufficient to estimate the area required for
routing. The blocks are placed in a manner such that there is sufficient
routing area between the blocks, so that routing algorithms can complete
the task of routing of nets between the blocks. If complete routing is not
possible, placement phase has to be repeated.

3. Floorplanning and Placement for high performance circuits: For
high performance circuits the blocks are to be placed such that all critical
nets can be routed within their timing budgets. In other words, the
length of critical paths must be minimized. The floorplanning(placement)
process for high performance circuits is also called as performance driven
floorplanning(placement).

4. Packaging considerations: All of these blocks generate heat when the
circuit is operational. The heat dissipated should be uniform over the
entire surface of the group of blocks placed by the placement algorithms.
Hence, the chip planning, floorplanning and placement algorithms must
place the blocks, which generate a large amount of heat, further apart

6.1. Floorplanning 193

from each other. This might conflict with the objective for high perfor-
mance circuits and some trade off has to be made.

5. Pre-placed blocks: In some cases, the locations of some of the blocks
may be fixed, or a region may be specified for their placement. For
example, in high performance chips, the clock buffer may have to be
located in the center of the chip. This is done with the intention to reduce
the time difference between arrival time of the clock signal at different
blocks. In some cases, a designer may specify a region for a block, within
which the block must be placed.

In this chapter, we will discuss floorplanning and pin assignment problems
in different design styles. Section 6.1 discusses the Floorplanning problem
and algorithms for the floorplanning problems. Section 6.2 presents a brief
introduction to chip planning, while pin assignment is discussed in Section 6.3.
In Section 6.4, we discuss integrated approach to these problems.

6.1 Floorplanning

As stated earlier, Floorplanning is the placement of flexible blocks, that is,
blocks with fixed area but unknown dimensions. It is a much more difficult
problem as compared to the placement problem (discussed in Chapter 7). In
floorplanning, several layout alternatives for each block are considered. Usually,
the blocks are assumed to be rectangular and the lengths and widths of these
blocks are determined in addition to their locations. The blocks are assigned
dimensions by making use of the aspect ratios. The aspect ratio of a block is
the ratio of the width of the block to its height. Usually, there is an upper and
a lower bound on the aspect ratio a block can have as the blocks cannot take
shapes which are too long and very thin. Initial estimate on the set of feasible
alternatives for a block can be made by statistical means, i.e., by estimating
the expected area requirement of the block. Many techniques of general block
placement have been adapted to floorplanning. The only difference between
floorplanning and general block placement is the freedom of cells’ interface
characteristic. Like placement, inaccurate data partly affects floorplanning.
In addition to the inaccuracy of the cost function that we optimize, the area
requirements for the blocks may be inaccurate.

Floorplanning algorithms are typically used in hierarchical design. This is
due to the fact that, although the dimensions of each leaf of the hierarchical
tree may be known, the blocks at the node level in the tree are flexible, i.e.,
they can take any dimension. Hence, the floorplanning algorithms are used at
each of the nodes in the tree so that the area of the layout is minimum and the
position of all the blocks are identified.

6.1.1 Problem Formulation

The input consists of By, Bs,..., B, circuit blocks, with area ay,as,...,a,
respectively. Associated with each block are two aspect ratios AL and A?, which

194 Chapter 6. Floorplanning and Pin Assignment

give the lower and the upper bound on the aspect ratio for that block. The
floorplanning algorithm has to determine the width w; and height, h; of each
block B; such that Al < 2t < Ak In addition to finding the shapes of the
blocks, the ﬂoorplanmng algorlthm has to generate a valid placement such that
the area of the layout is minimized.

A slicing floorplan is a floorplan which can be obtained by recursively par-
titioning a rectangle into two parts either by a vertical line or a horizontal line.
The cut tree obtained by min-cut algorithm is known as slicing tree. A slicing
tree is a binary tree in which each leaf represents a partition and each internal
node represents a cut. Consider the floorplan as shown in Figure 6.1. Partitions
are labeled with letters and cutlines are labeled with numbers. Figure 6.1(b)
shows the slicing tree for the floorplan in Figure 6.1 (a). Figure 6.1(c) is the
slicing tree indicating the cut direction. Figure 6.1(d) shows a floorplan for
which there is no valid slicing tree.

A floorplan is said to be hierarchical of order k, if it can be obtained by
recursively partitioning a rectangle into at most k¢ parts. The hierarchy of
a hierarchical floorplan can be represented by a floorplan tree. Figure 6.2
shows a hierarchical floorplan of order 5 and its floorplan tree. Each leaf in
the tree corresponds to a basic rectangle and each internal node corresponds
to a composite rectangle in the floorplan. An important class of hierarchical
floorplans is the set of all slicing floorplans.

6.1.1.1 Design Style Specific Floorplanning Problems

Floorplanning is not carried out for some design styles. This is due to the
fixed dimensions of blocks in some design styles.

1. Full custom design style: Floorplanning for general cells is the same
as discussed above.

2. Standard cell design style: In standard cell design style, the dimen-
sions of cells are fixed, and floorplanning problem is simply the placement
problem. For large standard cell design, circuit is partitioned into several
regions, which are floorplanned, before cells are placed in regions.

3. Gate array design style: Like standard cells, the floorplanning prob-

lem is same as placement problem.

6.1.2 Classification of Floorplanning Algorithms
Floorplanning methods can be classified as follows:
1. Constraint based methods.
2. Integer programming based methods.
3. Rectangular dualization based methods.

4. Hierarchical tree based methods.

6.1. Floorplanning 195

(a) (b) B C

(d)

Figure 6.1: A floorplan with slicing tree and a non-slicing floorplan.

196 Chapter 6. Floorplanning and Pin Assignment

3 5 | 4
6 2
7
1 9
' 1a
8
11
D
A
E
c
B
-
1| 6 i 5| 4 9 | 10 2
12
8
11
0 0 0
3 6 5 4 9 10
1 11 8 7 12

Figure 6.2: Hierarchical Floorplan.

5. Simulated Evolution algorithms

6. Timing Driven Floorplanning Algorithms

These methods will be discussed in the following subsections.

Beside the methods stated above, several simple methods may be used, such
as min-cut method. The process of min-cut can be used to construct a sized
floorplan. The first phase of min-cut method i.e., bipartition of a weighted
graph, helps in constructing the floorplan. The weight of the vertex roughly
estimates the area taken up by the block. This weight may represent the area
of the corresponding ceil in general-cell placement. The initial sized floorplan
represents an empty base rectangle whose area is the total of all weights of the
vertices of the weighted graph and each node in the tree represents a rectangular
room in the layout area. All the floorplans that can be generated with min-cut
bipartitioning are slicing floorplans.

6.1.3 Constraint Based Floorplanning

This method, proposed by Vijayan and Tsay [VT91], constructs a floorplan
of optimal area that satisfies (respects) a given set of constraints. A set of

6.1. Floorplanning 197

horizontal and vertical topological (i.e., ordering) constraints is derived from
the relative placement of blocks. Given a constraint set, it is usually the case
that there is no reason to satisfy all the constraints in the set. This is especially
true when a majority of the blocks have flexible shapes. A floorplan is said
to respect a constraint, if for each pair of blocks, the floorplan satisfies at
least one constraint (horizontal or vertical). A constraint set is said to be
overconstmined if it has many redundant constraints. It is desirable to derive a
complete constraint set from the input relative placement and then to remove
those redundant constraints that result in reduction of floorplan area.

A topological constraint set of a set of blocks is given by two directed acyclic
graphs (Gg,Gv): G is the horizontal constraint graph and Gy is the vertical
constraint graph. In order to reduce the floorplan area, the heuristic iteratively
removes a redundant constraint from the critical path of either Gy or Gv and
also iteratively reshapes the blocks on the critical paths of the two graphs.
Critical path is the longest path in Gy or Gv. The input to the algorithm is
a constraint set (Gg,Gy) of the set of blocks. To minimize the floorplan area,
repeat steps 1 and 2 until there is no improvement in the floorplan area.

1. Step 1: Repeat the following steps until no strongly redundant edges on
Py or Py exist. Gy and Gy are topologically sorted and swept. Either
Py or Py, whichever is more critical is selected, where Py and Py are
the critical paths of Gy and Gy respectively. The strongly redundant
edge on the selected critical path is eliminated.

2. Step 2: The current shapes of the blocks are stored and a path, either Py
or Py is selected depending on which of the two is more critical. All the
flexible blocks on the selected path are reshaped. Gy and Gy are scanned
again to construct the new floorplan. If the newly generated floorplan is
better than the previous one the stored block shapes are updated. All
the steps described above are repeated, a specified number of times.

Each pass of the algorithm constitutes one execution of two steps. Con-
straint reduction takes place in step 1 and step 2 does the reshaping of the
blocks. If the chip dimensions are fixed, the passes are repeated until the tar-
get dimensions are reached. Otherwise the passes can be repeated until there is
improvement in the floorplan area. Typically three or four passes are required.

The purpose of removing a redundant edge on the critical path is to break
the path into two smaller paths. A good choice for such a redundant edge is
the one which is nearest to the center point of the path. The above heuristic
removes only one redundant constraint from a critical path at each iteration,
and thus seeks to minimize the number of constraints removed. An edge can be
checked for strong redundancy in constant time if we maintain the adjacency
matrix of Gy and Gy. It takes O(n?) time to set up adjacency matrices. A
topological sort of a directed acyclic graph with n nodes and m edges takes
O(m + n) time. The number of topological sorts executed depends on the
number of redundant edges removed, the user-specified value for the number
of reshaping iterations, and the number of passes.

198 Chapter 6. Floorplanning and Pin Assignment

6.1.4 Integer Programming Based Floorplanning

In this section an integer programming formulation for generating the floor-
plan developed by Sutanthavibul, Shragowitz and Rosen [SSR91] is presented.

The floorplanning problem is modeled as a set of linear equations using 0/1
integer variables. Two types of constraints are considered: the overlap con-
straints and the routability constraints. The overlap constraints prevent any
two blocks from overlapping whereas the routability constraints estimate the
routing area required between the blocks. For the critical nets, net lengths are
specified which should not be exceeded. The length of the net depends on the
timing budget of that net. The critical net constraints ensure that the length
of the critical nets does not exceed this specified value. We now describe how
the constraints can be developed.

1. Block overlap constraints for fixed blocks: Given two fixed (rigid)
blocks, By; and B,; which should not overlap, we have four possible ways
to position the two blocks so as to avoid overlap. Let {z;,yi, w;, hi}
and {z;,y;,w;,h;} be the 4-tuples associated with blocks B,; and Br;
respectively, where (z;,y;) gives the location of the block, w; is the width
of the block and h; is the height of the block. The block B,; can be
positioned to the right, left, above or below block B,;. These conditions
transformed into equations given below:

T +w; < Ty (By; is to the right of B.;), or
T —w; > Tj (Br; is to the left of B,;), or
Yi+hi <y (Br; is to the above of B,;), or
Yi — h]' > Yj (Brj is to the below of BM‘) (1)

To satisfy one of these equations, two O-1 integer variables x;; and y;;
are used for each pair of blocks. Two bounding functions W and H are
defined such that, |z; — z;] < W and |y; — y;] < H. W can be equal to
Wmax Which is the maximal allowed width of the chip or W = Zf:f+r w;.
Similarly, H = Hmax, the maximal allowed height of the chip or H =

P4+ h;. Equation set (1) can be rewritten with the introduction of

the integer variables to generate the ‘or’ condition as,

zi+w; <zj+ W(:Eij + yij)

T —w; > x; + W(l -z + yi5)

yi + hi <y; + W(l +zi5 — yij)

yi — hj 2 y; + W(2 - zij — yij) (2)

As the integer variables z;; and y;; can take either O or 1 values, only
one of the above equations in (2) will be active and other equations will
be true depending on the value of z;; and y;;. For example, when z;; =
yi; = 1, the first equation in (2) becomes active and all other equations

are true.
Z; 2 Oa Yi Z 0
T +w; <W,

Y2yt hi 3)

6.1. Floorplanning 199

where y* is the height to be minimized. To allow rotation of the blocks
so as to optimize the solution, another integer variable 2; is used for each
block. z; is 0 when the block is in its initial orientation and 1 when
the block is rotated by 90°. The constraints for the fixed blocks can be
rewritten as:

z; + zzh + (1= z))w; <z + M(zi; + yij)

z; —zh; — (1 — zj)wj >+ MQ1- i + yij)

yi + zlwz (1= 2z)hi <y; + M1+ 355 — yi5)

yi — zjw; — (1 = z5)h; > yj + M(2 — x5 — yij) (4)

where, M = max(W, H). Constraints (3) are rewritten as:

Z; 2 Oa Yi Z 07
z; + (1 — z)w; + z:h; < W,
v* 2y + (1= z)w + zihy (5)

where y* is the height to be minimized. The floorplanning problem, for
fixed blocks without taking into consideration either routing areas or crit-
ical nets can be solved by finding the minimum g* subject to constraints
(4) and (5).

2. Block overlap constraints for flexible blocks: So far we discussed
about fixed blocks. We can now see how constraints for flexible blocks can
be developed. The flexible blocks can take rectangular shapes within a
limited aspect ratio range i.e. its width and height can be varied keeping
the area fixed. The non-linear area relation is linearized about the point
of maximum allowable width by applying the first two members of the
Taylor series giving,

hi = hijp + Aw; A

where,
A.
htO = We ’
AVV"Q.:B
)\1 = 22 y

Aw; = Wimas ~ Wi

where Aw; is a continuous variable for block By;. The overlap constraints
for aflexible block By; and a fixed block B,; can be written as:

Ti + Wimee — Aw; < 5, (By; is to the right of B,;), or
Yyi + h,‘o + Awi/\i < Yj (ij is above Bm'), or
T —wy > ¥ , (By; is to the left of B,;), or
Vi — hj Z yj, (ij is below BM') (6)

Using two integer variables z;; and y;; per block pair as was done for
fixed blocks, the ‘or’ condition between the equations can be satisfied.

200 Chapter 6. Floorplanning and Pin Assignment

The same set of equations can be extended to get overlap constraints be-
tween two flexible blocks. Using the same technique, the interconnection length
constraints and routing area constraints can be developed. This set of equa-
tions are the input to any standard linear programming software package such
as LINDO. The locations of the blocks and their dimensions are variables, the
values of which are calculated by the software depending on the constraints
and the objective function.

In [CF98], authors present a new convex programming formulation of the
area minimization with a lesser numbers of variables and constraints than pre-
vious papers.

6.1.5 Rectangular Dualization

The partitioning process generates a group of subcircuits and their intercon-
nections. This output from a partitioning algorithm can be represented as a
graph G = (V, E) where the vertices of the graph correspond to the subcir-
cuits and the edges represent the interconnections between the subcircuit. The
floorplan can be obtained by converting this graph into its rectangular dual and
this approach to floorplanning is called rectangular dualization. A rectangular
dual of graph G = (V, E) consists of non-overlapping rectangles which satisfy
the following properties:

1. Each vertex v; € V corresponds to a distinct rectangle R;, 1 < ¢ < |V].

2. For every edge (v;,v;) € E, the corresponding rectangles R; and R; are
adjacent in the rectangular dual.

When this method is directly applied to the graph generated by partitioning,
it may not be possible to satisfy the second property for generating the rect-
angular dual.

The problem of finding a suitable rectangular dual is a hard problem. In
addition, there are many graphs which do not have rectangular duals. A further
complication arises due to areas and aspect ratios of the blocks. In rectangular
dualization, areas and aspect ratios are ignored to simplify the problem. As
a result, the output cannot be directly used for floorplanning. Kozminski and
Kinnen [KK84] have presented an algorithm for finding a rectangular dual of a
planar triangulated graph. Usually, the graph is processed only if a rectangular
dual for the graph exists. Bhasker and Sahni [BS86] have extended the
approach in [KK84] to present a linear time algorithm for finding a rectangular
dual of a planar triangulated graph.

A planar triangular graph (PTG) G is a connected planar graph that sat-
isfies the following properties:

1. every face (except the exterior) is a triangle.
2. all the internal vertices have a degree > 4.

3. all cycles that are not faces have length > 4.

6.1. Floorplanning 201

(a)

E

H

(b)

Figure 6.3: Conversion of planar digraph to a floorplan.

Given a PTG, a planar digraph is constructed which is a directed graph. Once
a planar digraph is constructed, it can be converted into a floorplan as shown
in Figure 6.3. Lokanathan and Kinnen [LK89] presented a procedure for floor-
planning that minimizes routing parasitics using rectangular dualization. The
use of rectangular dualization maximizes adjacency of blocks that are heavily
connected or connected by critical nets.

6.1.6 Hierarchical Tree Based Methods

Hierarchical tree based methods represent a floorplan as a tree. Each leaf
in the tree corresponds to a block and each internal node corresponds to a
composite block in the floorplan. A floorplan is said to be hierarchical of order k,
if it can be obtained by recursively partitioning a rectangle into at most &k parts.
Physical hierarchy can be generated in two ways: top-down partitioning or

202 Chapter 6. Floorplanning and Pin Assignment

bottom-up clustering. Partitioning assumes that the relative areas (or number
of nodes) Within partitions, at a given level of hierarchy, may be fixed during
a top down construction of a decomposition tree (or partitioning tree). There
is no justification, except convenience, for this assumption. The optimal choice
of relative areas varies from problem instance to problem instance, but there is
no way to determine a desirable ratio, in top-down construction. Placements
performed by min-cut method, a popular partitioning algorithm, often creates
lot of vacant space or white space. Clustering on the other hand is a bottom-up
algorithm for constructing a decomposition tree (or cluster tree).

In [DEKP89] a hierarchical floorplanner for arbitrary size rectangular blocks
using the clustering approach has been proposed. At each level of the hierarchy,
highly connected blocks (or clusters of blocks) are grouped together into larger
clusters. At each level, the number of blocks is limited to five so that sim-
ple pattern enumeration and exhaustive search algorithms can be used later.
Blocks (or block clusters) which are connected by edges of greater than average
edge weight are grouped into a single cluster, if the resulting cluster has less
than five members.

After forming the hierarchical clustering tree, a floorplanner and a global
router together perform a top-down traversal of the hierarchy. Given an overall
aspect ratio goal and I/O pin goal, at each level of the hierarchy, the floorplan-
ner searches a simple library of floorplan templates and considers all possible
room assignments which meet the combined goals of aspect ratios and I/O pins.
At each level, the global routing problem is formulated as a series of minimum
steiner tree problems in partial 3-trees. The global routing solution at the cur-
rent level is used as the I/O pin goal for the floorplan evaluation, and as base for
the global routing refinement at the next level. This floorplanning and global
routing create constraints on the aspect ratio of the rooms, and gives assign-
ments of I/O pins on the walls of the rooms, which are recursively transmitted
downward as sub-goals to the floorplanner and global router. While evaluating
the cost of a given floorplan template and room assignment, both chip area
and net path length are considered. When undesirable block shapes and pin
positions are detected, alternate floorplan templates and room assignments are
tried by backtracking and using automatic module generators. This algorithm
performs better than other well-known deterministic algorithms and generates
solutions comparable to random-based algorithms.

Ting-Chi Wang and D. F. Wong [WW90] have presented an optimal al-
gorithm for a special class of floorplans called hierarchical floorplans of order
5. Two types of blocks have been considered; L-shaped and rectangular. The
algorithm takes a set of implementations for each block as input and identi-
fies the best implementation for each block so that the resulting floorplan has
minimum area.

6.1. Floorplanning 203

6.1.7 Floorplanning Algorithms for Mixed Block and Cell
Designs

All the algorithms discussed in the previous section can be used for floor-
planning of Mixed Block and Cell (MBC) designs. These designs can be viewed
as a set of blocks in a sea of cells. This is a popular ASIC layout design style.
However, these algorithms were not implemented as a part of any tool which
can generate floorplans for MBC designs. In this section, we describe some of
the algorithms that were developed as a part of a tool specifically designed for
floorplanning of MBC designs.

In [AK90], a heuristic algorithm has been developed for MBC designs. The
algorithm employs a combined floorplanning, partitioning and global routing
strategy. The main focus of the algorithm is in reducing the white space costs
and the wiring cost. In [Sec88], the simulated annealing approach is used to
solve the floorplanning problem for MBC designs. In [UKH85], “CHAMP”, a
floorplanning tool for MBC designs using the hierarchical approach has been
presented. In[USS90, PSS*88, cL93], the floorplanning problem for MBC de-
signs has been considered. All existing floorplanning algorithms, except [cL93],
for the MBC designs restrict the block shapes to rectangular in order to simplify
the problem at hand. Even in [cL.93], only the pre-designed block shapes are
considered to be rectilinear and the shapes generated for soft modules are al-
ways rectangular with varying aspect ratios. None of the existing floorplanning
algorithms for MBC designs take advantage of the flexibility of the standard
cell regions.

6.1.8 Simulated Evolution Algorithms

[RR96] describes a Simulated Evolution (Genetic) Algorithm for the Floor-
plan Area Optimization problem. The algorithm is based on suitable tech-
niques for solution encoding and evaluation function definition, effective cross-
over and mutation operators, and heuristic operators which further improve
the method’s effectiveness. An adaptive approach automatically provides the
optimal values for the activation probabilities of the operators. Experimental
results show that the proposed method is competitive with the most effective
ones as far as the CPU time requirements and the result accuracy is considered,
but it also presents some advantages. It requires a limited amount of memory,
it is not sensible to special structures which are critical for other methods, and
has a complexity which grows linearly with the number of implementations.
Finally, it is demonstrated that the method is able to handle floorplans much
larger (in terms of number of basic rectangles) than any benchmark previously
considered in the literature.

In [FSZ*97] a Multi-Selection-Multi-Evolution (MSME) scheme for par-
allelizing a genetic algorithm for floorplan optimization is presented and its
implementation with MPI and its experimental results are discussed. The ex-
perimental results on a 16 node IBM SP2 scalable parallel computer have shown
that the scheme is effective in improving performance of floorplanning over that

204 Chapter 6. Floorplanning and Pin Assignment

of a sequential implementation. The parallel version could obtain better results
with more than 90parallel program could reduce both chip area and maximum
path delay by more than 8also speed up the evolution process so that there
could be higher probability of obtaining a better solution within a given time
interval.

The genetic algorithm (GA) paradigm is a search procedure for combinato-
rial optimization problems. Unlike most of other optimization techniques, GA
searches the solution space using a population of solutions. Although GA has
an excellent global search ability, it is not effective for searching the solution
space locally due to crossover-based search, and the diversity of the popula-
tion sometimes decreases rapidly. In order to overcome these drawbacks, the
paper [TKH96] proposes a new algorithm called immunity based GA (IGA)
combining features of the immune system (IS) with GA. The proposed method
is expected to have local search ability and prevent premature convergence.
IGA is applied to the floorplan design problem of VLSI layout. Experimental
results show that IGA performs better than GA.

6.1.9 Timing Driven Floorplanning

With increasing chip complexities and the requirement to reduce design time,
early analysis is becoming increasingly important in the design of performance
critical CMOS chips. As clock rates increase rapidly, interconnect delay con-
sumes an appreciable portion of the chip cycle time, and the floorplan of the
chip significantly affects its performance.

[SYTBO95] presents a timing-influenced floorplanner for general cell IC de-
sign. The floorplanner works in two phases. In the first phase the modules
are restricted to be rigid and the floorplan to be slicing. The second phase of
floorplanner allows modification to the aspect ratios of individual modules to
further reduce the area of the overall bounding box. The first phase is imple-
mented using genetic algorithm while in the second phase, a constraint graph
based approach is adopted.

In [YSAF95] a timing driven floorplanning program for general cell layouts
is presented. The approach used combines quality of force directed approach
with that of constraint graph approach. A floorplan solution is produced in
two steps. First a timing and connectivity driven topological arrangement is
obtained using a force directed approach. In the second step, the topological
arrangement is transformed into a legal floorplan. The objective of the sec-
ond step is to minimize the overall area of the floorplan. The floorplanner is
validated with circuits of sizes varying from 7 to 125 blocks.

[NLGV95] describes a system for early floorplan analysis of large designs.
The floorplanner is designed to be used in the early stages of system design, to
optimize performance, area and wireability targets before detailed implemen-
tation decisions are made. Unlike most floorplanners which optimize timing by
considering only a subset of paths this floorplanner performs static timing anal-
ysis during the floorplan optimization process, instead of working on a subset
of the paths. The floorplanner incorporates various interactive and automatic

6.1. Floorplanning 205
floorplanning capabilities.

6.1.10 Theoretical advancements in Floorplanning

In [PL95] P. Pan and C. L. Liu propose two area minimization methods for
general floorplans with respect to the floorplan sizing problem.

The traditional algorithm for area minimization of slicing floorplans due to
Stockmeyer has time and space complexity O(n?) in the worst case. For more
than a decade, it has been considered the best possible. [Shi] presents a new
algorithm of worst-case time and space complexity O(nlogn), where n is the
total number of realizations for the basic blocks, regardless whether the slicing
is balanced or not. It has also been shown that é(nlogn) is the lower bound
on the time complexity of any area minimization algorithm. Therefore, the
new algorithm not only finds the optimal realization, but also has the optimal
running time.

In [PSL96], the complexity of the area minimization problem for hierarchi-
cal floorplans has been shown to be NP-complete (even for balanced hierarchical
floorplans). A new algorithm has been presented for determining the nonredun-
dant realizations of a wheel. The algorithm has time cost O(k? log k) and space
cost O(k?) if each block in a wheel has at most k realizations. Based on the
new algorithm for wheel, the authors have designed a new pseudo-polynomial
area minimization algorithm for hierarchical floorplans of order-5. The time
and space costs of the algorithm are O((nM)?log(nM)) and O(n?M), respec-
tively, where n is the number of basic blocks and M is an upper-bound on
the dimensions of the realizations of the basic blocks. The area minimization
algorithm was implemented. Experimental results show that it is very fast.

In [CT], the authors have found an Q(k?) lower bound for area optimization
of spiral floorplans. Let F be a spiral floorplan where each of its five basic
rectangles has ¥ implementations. It has been shown that there can be as
many as (k?) useful implementations generated for F, in the worst case. This
implies that the previously known O(kﬁg"k)-time algorithm is almost optimal.

In [PL], the authors have presented two area minimization methods for
general floorplans, which can be viewed as generalizations of the classical algo-
rithm for slicing floorplans of Otten (1982) and Stockmeyer (1983) in the sense
that they reduce naturally to their algorithm for slicing floorplans. Compared
with the branch-and-bound algorithm of Wimer et al (1989), which does not
have a nontrivial performance bound, these methods are provably better than
an exhaustive method examined for many other examples.

[HL97] presents a formal algebraic specification (in SETS notation) that is
appropriate for VLSI physical design layout and capable of representing both
the floorplan topology and the modules’ dimensions. The specification pro-
posed allows a concise and rigorous representation of arbitrarily complex com-
posite floorplans. This algebraic description unifies-under a rotation-invariant
single-expression formalism-slicing and non-slicing generalized wheels floor-
plans. As needed by specific floorplan algorithms, it supports either a topology-
dimensionless description or the introduction of module dimensions. Finally, it

206 Chapter 6. Floorplanning and Pin Assignment

allows an eightfold reduction-over previous representations-of the total number
of floorplan solutions considered in floorplanning problem algorithms.

In [KD97] a new method of non-slicing floorplanning is proposed, which
is based on the new representation for non-slicing floorplans, called bounded
slicing grid (BSG) structure. The authors have developed a new greedy al-
gorithm based on the BSG structure, running in linear time, to select the
alternative shape for each soft block so as to minimize the overall area for gen-
eral floorplan, including non-slicing structures. A new stochastic optimization
method, named genetic simulated annealing (GSA) for general floorplanning
is proposed. Based on BSG structure, SA-based local search and GA-based
global crossover is extended to L-shaped, T-shaped blocks and high density
packing of rectilinear blocks is obtained.

In [DSKB95], it is shown that for any rectangularly dualizable graph, a
feasible topology can be obtained by using only either straight or Z-cutlines
recursively within a bounding rectangle. Given an adjacency graph, a potential
topology, which may be nonslicible and is likely to yield an optimally sized
floorplan, is produced first in a top-dozen fashion using heuristic search in AND-
OR graphs. The advantage of this technique is four-fold: (i) accelerates top-
down search phase, (ii) generates a floorplan with minimal number of nonslice
cores, (iii) ensures safe routing order without addition of pseudo-modules, and
(iv) solves the bottom-up algorithm efficiently for optimal sizing of general
floorplans in the second phase.

[TY95] addresses the problem of minimizing wiring space in an existing slic-
ing floorplan. Wiring space is measured in terms of net density, and the existing
floorplan is adjusted only by interchanging sibling rectangles and by mirroring
circuit modules. An exact branch and bound algorithm and a heuristic are
given for this problem. Experiments show that both algorithms are effective in
reducing wiring space in routed layouts.

6.1.11 Recent Trends

Several new trends are emerging in floorplanning, we discuss a few of them.
Interactive floorplanning can improve productivity, improve performance and
reduce die size. In [EK96a] an interactive floorplanner based on the genetic
algorithm is presented. Layout area, aspect ratio, routing congestion and max-
imum path delay are optimized simultaneously. The design requirements are
refined interactively as knowledge of the obtainable cost tradeoffs is gained
and a set of feasible solutions representing alternative and good tradeoffs is
generated. Experimental results illustrate the special features of the approach.

In [YTK95], a hybrid floorplanning methodology is proposed. Two hier-
archical strategies for avoiding local optima during iterative improvement are
proposed: (1) Partial Clustering, and (2) Module Restructuring. These strate-
gies work for localizing nets connecting small modules in small regions, and
conceal such small modules and their nets during the iterative improvement
phase. This method is successful in reducing both area and wire length in
addition to reducing the computational time required for optimization. Al-

6.2. Chip planning 207

though the method only searches slicing floorplans, the results are superior to
the results obtained even with non-slicing floorplans.

In [WC95], a new approach to solve a general floorplan area optimization
problem is proposed. By using the analogy between a floorplan and a resistive
network, it has been shown that a class of zero wasted area floorplan can be
achieved under the shape constraint of continuous aspect ratio. However, in
many practical designs, each module may have constraints on its dimensions
such as minimum length or width. In this paper, the authors have defined
the floorplan area minimization problem under the constrained aspect ratio
and give necessary conditions for the realization of zero wasted area floorplan
under the shape constraints. A set of optimization methods is developed to
minimize the wasted area if no zero wasted area floorplan is achievable.

6.2 Chip planning

Both floorplanning and placement problems either ignore the interconnect or
consider it as a secondary objective. Chip planning is an attempt to integrate
floorplanning and interconnect planning. The basic idea is to comprehend
impact of interconnect as early as possible.

6.2.1 Problem Formulation

The input consists of By, Bs,..., B, circuit blocks, with area a;,a2,...,a,
respectively. Associated with each block are two aspect ratios A and AP,
which give the lower and the upper bound on the aspect ratio for that block.
In addition, we have S1,S2,...,Sn signals. For each signal we have criticality,
width, source and sink. The chip planning algorithm has to determine the
width w; and height, h; of each block B; and layout of each signal such that
Al < %L < A!. In addition to finding the shapes of the blocks, the chip planning
algorithm has to generate a valid placement for blocks and interconnect such
that the area of the layout is minimized.

6.3 Pin Assignment

The purpose of pin assignment is to define the signal that each pin will re-
ceive. Pin assignment may be done during floorplanning, placement or after
placement is fixed. If the blocks are not designed then good assignment of nets
to pins can improve the placement. If the blocks are already designed, it may
be possible to exchange a few pins. This is because some pins are function-
ally equivalent and some are equipotential Two pins are called functionally
equivalent, if exchanging the signals does not effect the circuit. For example,
exchanging two inputs of a gate does not effect the output of the gate. Two
pins are equipotential if both are internally connected and hence represent the
same net. The output of the gate may be available on both sides, so the out-

208 Chapter 6. Floorplanning and Pin Assignment

functionally equivalent pins equipotential pins

S

Figure 6.4: Functionally equivalent and equipotential pins.

put signal can be connected on any side. Figure 6.4 shows both functionally
equivalent pins and equipotential pins.

6.3.1 Problem Formulation

The purpose of pin assignment is to optimize the assignment of nets within
a functionally equivalent pin groups or assignment of nets within an equipo-
tential pin group. The objective of pin assignment is to reduce congestion or
reduce the number of crossovers. Figure 6.5 illustrates the effectiveness of pin
assignment. Note that a net can be assigned to any equipotential pin within
a set of functionally equivalent pins. The pin assignment problem can be for-
mally stated as follows: Given a set of terminals 77,7T3,...,T, and a set of
pins Py, Pa,..., Py, m > n. Bach T;is assigned to pin P;, ¢ = 1,2,...,n.
Let £p, be the set of pins which are equipotential and equivalent to P;, the
objective of pin assignment is to assign each T; to a pin in £,, such that a
specific objective function is minimized. The objective functions are typically
routing congestions. For standard cell design, it may be the channel density.

6.3.1.1 Design Style Specific Pin Assignment Problems

Pin assignment problems in different design styles have different objectives.

l. Full custom design style: In full custom, we have two types of pin
assignment problems. At floorplanning level, the pin location along the
boundary of the block can be changed as the block is assigned a shape.
This assignment of pins can reduce routing congestions. Thus, not only
we can change pin assignment of pins, we can also change the location of
pins along the boundary. At placement level, the options are limited to
assigning the nets to pins. Notice that in terms of problem formulation,

6.3. Pin Assignment 209

f
i

Figure 6.5: Impact of pin assignment.

we can declare all pins of a flexible block as functionally equivalent to
achieve pin assignment in floorplanning.

2. Standard cell design style: The pin assignment problem for stan-
dard cells is essentially that of permuting net assignment for functionally
equivalent pins or switching equipotential pins for a net.

3. Gate array design style: The pin assignment problem for gate array
design style is the same as that of standard cells.

Assignment problems mostly occur in semi custom design styles such as
gate arrays or standard cells.

In gate array design, the cells are pre-fabricated and are arranged on the
master. Pin assignment problem in this type of design style is to assign to each
terminal a functionally equivalent slot such that wiring cost is minimized. Slots
in this case are the pin locations on pre-designed (library) cells. In standard
cells, however, equipotential pins appear as feedthroughs. Since no wiring
around the cell is needed, the wire length decreases with the use of feedthroughs.

6.3.2 Classification of Pin Assignment Algorithms

The pin assignment techniques are classified into general techniques and
special pin assignment techniques. General techniques are applicable for pin

210 Chapter 6. Floorplanning and Pin Assignment

LA A J
®
~
e
Te -

Figure 6.6: Concentric circle mapping.

assignment at any level and any region within a chip. Such techniques are
applied at board level as well as chip level. On the other hand, the special
pin assignment technique can be used for assignment of pins within a specific
region such as channel or a switchbox.

6.3.3 General Pin Assignment

There are several methods in this category as discussed below:

1. Concentric Circle Mapping: To planarize the interconnections, this
method models the pin assignment problem by using two concentric cir-
cles [Kor72]. The pins on the component being considered are repre-
sented as points on the inner circle whereas the points on the outer circle
represent the interconnections to be made with other components. The
concentric circle mapping technique solves the pin assignment problem
by breaking it into two parts. The first part is the assignment of pins to
points on the two circles and in the second part the points on the inner
and outer circles are mapped to give the interconnections.

For example, consider the component and the pins shown in Figure 6.6(a).
The two circles are drawn so that the inner circle is inside all the pins

6.3. Pin Assignment 211

on the component being considered while the outer circle is just inside
the pins that are to be connected with the pins of this component. This
is shown in Figure 6.6(b). Lines are drawn from the component center
to all these pins as shown in Figure 6.6(c). The points on the inner and
outer circle are defined by the intersection of these lines with the circles
(Figure 6.6(d)). The pin assignment is completed by mapping the points
on the outer circle to those on the inner circle in a cyclic fashion. The
worst and the best case assignment are shown in Figure 6.6(e) and (f).

2. Topological Pin Assignment: Brady [Bra84] developed a technique
which is similar to concentric circle mapping and has certain advantages
over the concentric circle mapping method. With this method it is easier
to complete pin assignment when there is interference from other compo-
nents and barriers and for nets connected to more than two pins. If a net
has been assigned to more two pins than the pin closest to the center of
the primary component is chosen and all other pins are not considered.
Hence in this case only one pin external to the primary component is
chosen. The pins of the primary component are mapped onto a circle as
in the concentric circle method. Then beginning at the bottom of the
circle and moving clockwise the pins are assigned to nets and hence they
get assigned in the order in which the external pins are encountered. For
nets with two pins the result is the same as that for concentric circle

mapping.

3. Nine Zone Method: The nine zone method, developed by Mory-Rauch,
is a pin assignment technique based on zones in a Cartesian coordinate
system [MR78]. The center of the coordinate system is located inside a
group of interchangeable pins on a component. This component is called
pin class. A net rectangle is defined by each of the nets connected to the
pin class. There are nine zones in which this rectangle can be positioned
as shown in Figure 6.7. The positions of these net rectangles are defined
relative to the coordinate system defined by the current pin class.

6.3.4 Channel Pin Assignment

In design of VLSI circuits, a significant portion of the chip area is used for
channel routing. Usually, after the placement phase, the positions of the ter-
minals on the boundaries of the blocks are not completely fixed and they still
have some degree of freedom to move before the routing phase begins. Fig-
ure 6.8 shows how channel density could be reduced by moving the terminals.
Figure 6.8(a) shows a channel which needs three tracks. By moving the pins,
the routing can be improved such that it requires one track as shown in Fig-
ure 6.8 (b). The channel pin assignment problem is the problem of assigning
positions for the terminals, subject to constraints imposed by design rules and
the designs of the previous phases, so as to minimize the density of the chan-
nel. The problem has various versions depending on how the pin assignment

212 Chapter 6. Floorplanning and Pin Assignment

(a) (b)

Figure 6.8: Reducing channel density by moving terminals.

constraints are specified. Many special cases of this problem have been inves-
tigated. In [GCW83], Gopal, Coppersmith, and Wong considered the channel
routing problem with movable terminals.

In [YWO1] the channel pin assignment problem in which assignment of ter-
minals is subject to linear order position constraints is solved using a dynamic
programming formulation by Yang and Wong. Their method is described
briefly below. Except minor changes for clarity, the discussion is essentially the
same as it appears in [YWO91].

Since the terminals are linearly ordered we have a set of terminals at the top
given by TOP in which the terminals ¢; < ¢; < ... < t,. Similarly the terminal
set for terminals at the bottom is given by BOT in which the terminals are
ordered b1 < b2 < ... < b,. Each terminal t; on the top and b; on the
bottom have a corresponding set given by T; and B; which indicate the possible

6.3. Pin Assignment 213

t t. t.
] i+1 ST | R
T B, ibi. b b, .
by by i b
(a) (b)
t, £ (18
] i+1]
®j+1 5
(c) (d)

Figure 6.9: Four types of (i, j, k) solutions.

positions these terminals can occupy. A solution to this problem is called an
(i,5,k)-solution if it assigns exactly ¢o, t1,¢2,...,t;, bo, b1,b2,...,b; to the firstk
columns of the channel where ¢y and by correspond to a auxiliary column and
two trivial nets which consist of only one terminal are introduced. The main
idea used by the algorithm is to first compute a density function using dynamic
programming and then use backtracking to reconstruct an optimal solution.

Let L be the length of the channel and N be the number of nets to be routed.
The set of terminals on the top boundary of the channel is denoted as TOP,
and the set of terminals on the bottom boundary of the channel is denoted as
BOT. In this implementation, separation constraints and position constraints
are not considered and but the terminals are definitely allowed to be within a
certain position only i.e. the length L of the channel. The (3, j, k) solutions
can be classified into the following four types, according to pin assignment at
column % as illustrated in Figure 6.9.

¢ Type 0: No terminal is assigned to either endpoints of column & as shown
in Figure 6.9(a).

e Type 1: Only ¢; is assigned to the top endpoint of column & as shown in
Figure 6.9(b).

o Type 2: Only b; is assigned to the bottom endpoint of column % as shown
in Figure 6.9(c).

e Type 3: Both#; and b; are assigned to column % as shown in Figure 6.9(d).

Let d(i, j, k) be the density of the channel considering i terminals at the
top and j terminals at the bottom after consideration of k& columns. Let
x(i,5,k), y(i,5,k) and 2(4, 5, k) be the local densities (crossing numbers) at

214 Chapter 6. Floorplanning and Pin Assignment

column k considering ; nets at the top and j nets at the bottom for Type
1, Type 2 and Type 3 solutions respectively. Let Ri(i,j) denote the set
of nets with one terminal in {#1,%s,...,%;-1,b1,b2,...,b;} and one terminal
in TOP U BOT - {ti,t2,...,,b1,b2,...,b;}, and the net containing ¢;, if
it is not trivial. Let Ry(%,j) denote the set of nets with one terminal in
{t1,t2, ..., ts, b1, b2, ...,bj—1}, and one terminal in TOP UBOT - {t3, ta, .. ., t;,
b1, ba, ..., b;}, and the net containing b;, if it is not trivial. Let R3(¢,7) denote
the set of nets with one terminal in {ti,%2,...,ti—1,b1,b2,...,b;-1}, and one
terminal in TOP U BOT -{t1,t2,...,%;,b1,b2,...,b;} , and the net containing
t; or bj, if it is not trivial and if they do not belong to the same net. Hence we
have

z(i, 5, k) = { [R1(4,7)] otherwise

N s if K ¢ B;
y(i, 5, k) = { |Rx (3,)| otherwise
z(i,5,k) = { |R1(4,)] otherwise

The algorithm for optimal channel pin assignment is shown in Figure 6.10.
It is easy to see that the time complexity of the algorithm Linear-CPA is O(pql).

6.4 Integrated Approach

The various stages in the physical design cycle evolved as the entire prob-
lem is extremely complex to be solved altogether at once. But over the years,
with better understanding of the problems, attempts are made to merge some
steps of the design cycle. For example, floorplanning was considered as a prob-
lem of just finding the shapes of the blocks without considering routing areas.
Over the years, the floorplanning problem has been combined with the place-
ment problem [DEKP89, SSR91, WL86]. The placement problem is sometimes
combined with the routing problem giving rise to the ‘place and route’ algo-
rithms [Esc88, FHR&5, SSV85, Sze86].

In this section, the approach used by Dai, Eschermann, Kuh and Pedram
in BEAR [DEKP89] is described briefly. BEAR is a macrocell-based layout
system. The process of floorplanning is carried out in the following three steps:

. Clustering: In this step, a hierarchical tree is constructed. Blocks that
are strongly connected are grouped together in a cluster. Each cluster
can have a limited number of blocks within it. The clustering process
considers the shapes of the blocks to avoid a mismatch within the cluster.
This step is repeated to build the cluster tree.

2. Placement: In this step, the tree is traversed top-down. The target
shape and terminal goals for the root of the cluster tree is specified.
This information is used to identify the topological possibility for the

6.4. Integrated Approach 215

Algorithm LINEAR-CPA()
begin
(* initialize *)
for i =0 to p do
for j =0togdo
d(i, j,0) = +o0;
for k=0to L do
d(0,0,k) =0;
COMPUTE-CROSS();
for k=1to L do
for i =0 to p do
for j =0 togdo
(* type 1 solution *)
Dy = max{d(i — 1,5,k — 1),z(i, 5, k)};
(* type 2 solution *)
Dy = max{d(i, j — 1,k — 1),y(i,4,k)};
(* type 3 solution *)
D3 = max{d(i — 1,j — 1,k — 1), 2(i, 5, k) };

if d(p,q,l) = 400 then
return ¢ is not feasible;

else
(* backtracking for constructing optimal solution *)
i=p) =g

for k = L down to 1 do
if d(i,j,k) = D, then
f@)=kji=i-1;
else if d(i,j, k) = Dy then
9g(i) =k j=7—-1;
else if d(i,j, k) = D3 then
f@)=k; g(§) =k;
i=i—-1j=75-1
return 7 = (f, g);
end.

Figure 6.10: The optimal channel pin assignment algorithm

216

Chapter 6. Floorplanning and Pin Assignment

Procedure COMPUTE-CROSS()
begin

for (i = 0top)do
for (j = Otogq) do
COMPUTE(Ry(i,7)); (* Compute |R;(3,7)| *)
COMPUTE(Rz(i,j)); (* Compute |Ry(i,j7)| *)
COMPUTE(Rs(t,5)); (* Compute |Rs3(i,7)| *)
for (k = 0to L) do
z(i,j, k) = +o0;
y(i, 5, k) = 4005
2(1,5,k) = +o0;
for(i = 0top)do
for(j = 0toq)do
for(ke T;) do
&.“(i,j, k) =]Rl(zr.;'”:
for(k € B;) do
y(i:ja k) = |R2(?'a.?)|:
for(k € T,N B,) do
2(i,j, k) = |Ra(3, j)I;

end.

Figure 6.11: The COMPUTE-CROSS procedure for the channel pin assignment
algorithm

clusters at the level below. This in turn sets the shape and terminal
goals for the immediate lower levels in the hierarchy till at the leaf level
the orientations of the blocks are determined. For each of the topologies,
the routing space is determined. The selection of a particular topology
is based on the area and the shape of the resulting topology and the
connection cost. The system is developed so as to allow the user to
control the trade off between the shape, the area and the connection
costs. This strategy works well in case the blocks at the leaf level are
flexible so that the shapes of these blocks can be adjusted to the shape
of the cluster. On the other hand, if the leaf level blocks are fixed then
this top-down approach can give unfavorable results. This is due to the
fact that the information of the shape of these blocks at the leaf level are
not considered by the objective function when determining the cluster
shapes at higher levels of the cluster tree. This is rectified by passing
the shape information from the leaves towards the root of the tree during
the clustering phase. In addition, during the top-down placement step,
a look-ahead is added so that the objective function can examine the
shapes generated during clustering, at a level below the immediate level
for which the shape is being determined.

6.5. Summary 217

3. Floorplan optimization: This an improvement step that resizes se-
lected blocks iteratively. The blocks to be resized are identified by com-
puting the longest path through the layout surface using the routing
estimates done in the previous step.

6.5 Summary

Floorplanning and Pin assignment are key steps in physical design cycle.
The pin assignment is usually carried out after the blocks have been placed to
reduce the complexity of the overall problem.

Several placement algorithms have been presented. Simulated annealing
and simulated evolution are two most successful placement algorithm. Al-
though these algorithms are computationally intensive, they do produce good
placements. Integer programming based algorithms for floorplanning have been
also been successful. Several algorithms have been presented for pin assign-
ment, including optimal pin assignment for channel pin assignment problems.
The output of the placement phase must be routable, otherwise placement has
to be repeated.

6.6 Exercises

1. Given the following 14 rectangles with their dimensions specified, write
a program that will arrange all these rectangles within 5000 sq. units of
area, if possible, or otherwise minimize the area required. The dimensions
(width x height) of the rectangles are By = 15 x 15, Ry = 25 x 15, R3 =
10 x 30,Ry = 30 x 20, Rs = 10 x 15, R¢ = 20 x 5, Ry = 10 x 25, Rg
30 x 15, Rg =10x 65, R10 =10 x 25, R11 =20 % 20, Rys =10 % 20, Ry3
30 x 15, R4 = 40 x 15.

2. Recall that the aspect ratio of a block is the ratio of its height and width.
If each rectangle in problem 1 can have three different aspect ratios, find
the appropriate aspect ratio for each rectangle so that the area occu-
pied by the rectangles is minimized. The set of aspect ratios for R;,
is R¢, is, R} = {1.0,1.2,2.0}, R§ = {0.8,1.5,1.9}, R$ = {0.6,2.0,3.0},
R = {0.8,1.2,1.5}, R¢ = {0.75,1.2,1.5}, R¢ = {0.3,0.9,2.0}, R? =
{0.4,1.2,1.5}, R§ = {0.5,1.0,1.5}, R} = {0.8,3.0,4.0}, R}, = {0.4, 1.2,
1.8}, R}, = {0.5,1.0,1.2}, R}, = {0.5,0.9,1.2}, R}, = {0.5,1.0,1,5},

¢ = {0.4,1.6,2,5}.

3. Use the lowest and highest aspect ratios for each rectangle in problem 2
as lower and upper bounds respectively and generate a placement which
occupies minimum area.

218 Chapter 6. Floorplanning and Pin Assignment

t4. Apply Simulated Annealing algorithm for pin assignment problem. In
each iteration, pins of each block are permuted and routing congestion is
estimated.

+5. Develop an algorithm for pin assignment of a full custom layout based on
concentric circle mapping.

1 6. Implement the channel pin assignment algorithm. Discuss the constraints,
based on functionally equivalent and equipotential pins.

Bibliographic Notes
A floorplanning system designed to work within a hierarchical design envi-
ronment supporting multiple design styles has been discussed in [MTDLI0].
A technique for floorplanning and pin assignment of general cell layouts has
been developed in [PMSK90]. A global floorplanning approach has been dis-
cussed in [PD86]. The approach is based on a combined min-cut and slicing
paradigm. A pin assignment algorithm for improving the performance in stan-
dard cell design by improving the longest delay has been discussed in [SL90].
A pin assignment problem for macro-cells is discussed in [YYL88]. An ap-
proach which combines pin assignment and global routing has been developed
in [Con89]. In [KK95], yield issues are considered. Authors demonstrate that
for large area VLSI chips, especially those that incorporate some fault toler-
ance, changes in the floorplan can affect the projected yield. In [KK97], the
authors have demonstrated that the floorplan of a chip can affect its projected
yield in a nonnegligible way, for large area chips with or without fault-tolerance.
In [MAC98], a floorplanner for RF circuits based on a genetic algorithm that
supports simultaneous placement and routing has been developed. In [MK9S],
Sequence-pair based placement method for hard/soft/pre-placed modules has
been discussed (also discussed in chapter 7). In [ITK98], a new approach for
the minimum area floorplanning is proposed where the shape of every module
can vary under the constraint of area and floorplan topology. Simulating the
air-pressure mechanics, the algorithms iterate to improve the layout to decide
the shapes and positions of modules. In [CF98], a convex formulation of the
floorplan area minimization problem is presented.

