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Abstract

Despite the progress that has been made in the field of program visualization, programmers
nowadays still rely on inserting extra code (e.g. print statements) to visualize complicated program
states during debugging. There are many obstacles that have impeded and continue to impede
program visualization for practical use. One such major obstacle is that a wide variety of data types
and interpretations from data to visualizations are arbitrary. It is unlikely that visualizations will be
available a priori to cover everything that might be of interest. In an attempt to address the problem,
a debugging visualization tool called xDIVA is presented here. The visual effects of xDIVA are 3-D
shapes, colors and animations from a 3-D rendering engine. xDIVA conducts a novel and meticulous
object-oriented design so that visualization metaphors are interactive, composable and decoupled
from data, i.e. a complicated visualization can be composed and assembled from basic ones, each
of which is independently replaceable. A new mapping system that maps data to visualization is
proposed to support such composition and assembling.
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Toward Arbitrary Mapping for

Debugging Visualizations

1 INTRODUCTION

Software systems are notorious for being difficult to understand and maintain. So, approaches
that employ visualization to address the problem have been popular for decades. For example,
UML has become a popular and successful approach to visualizing the structural aspects of
software systems, which are considered more difficult to grasp through source code. Simply
put, humans can assimilate complicated information much more efficiently if the information
is represented by graphics, images or diagrams.

In many application domains, successful visualizations, no doubt, have been applied to
communicate clearly and stimulate viewer engagement and attention. Still, the visualization
problem remains a difficult one if the domain of data is not constrained, limited, or fixed. A
simple example can explain the problem. Consider a class X with three attributes which have
been poorly named.

class X {
int a ;
int b ;
int c ;
bi
The meaning of class X can be interpreted in several ways depending on the application
domains. For example, X can be a vector in a 3-dimensional space. A visual with an arrow
pointing to the 3D coordinate (a,b,c) in a 3D space is most suitable for the interpretation. In the
domain of geometry, 4,b,c may be the coefficients of a 2D line ax+by=c. A viewer often wants to
draw the line on an XY-plane with a lattice graph. In many other cases, a viewer may expect

a visualization that is computed indirectly from class X. One common example is to draw a

a b c
a+b+c’ a+b+c’ a+b+c

pie chart based on ( ) so that the composition of ratios for a, b, and ¢ can be
easily understood.

In fact, such interpretations can go on and on forever. We call such a problem “Diversity of
Visualization Interpretations (DVI).” The diversity of interpretations is what makes the problem
difficult. In general, the interpretations are often subject to domain knowledge and personal

preference. So, given a set of data, it is unlikely that any fixed-mapping visualization will be
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available a priori to cover everything that might be of interest. Any visualization tools that
claim to provide “automatic” visualizations will always fail for other general cases.

Debugging visualization, unfortunately, is a difficult area that has been continuously impeded
by the DVI problem. Every programmer learns printf debugging as their first debugging
technique. However, printing individual variables is inadequate in many cases, particularly
when complicated data structures are involved. With the help of visual debuggers (IDEs that
provide window-based display for watching variables at break points), programmers can watch
interested variables without changing and recompiling the code of a debuggee. Unfortunately,
visual debuggers are as limited as simple printf statements. So, programmers often write
debugging methods to print the variables and layout the data in a form that can be easily
understood by the human eye. Sometimes, these debugging methods can be costly to implement
if the size of data is large, layout algorithm is complicated, or aesthetic forms are critical.

In this paper, a debugging visualization tool — xDIVA (Debugging Information Visualization
Assistant), designed and implemented to address the problem is described. To tackle the
DVI problem, xDIVA conducts a novel and meticulous object-oriented design so that visuals
are interactive, composable and decoupled from data, i.e. a complicated visualization can
be composed and assembled from basic ones, each of which is independently replaceable.
Such a design rationale is based on ancient human wisdom. When facing infinite construction
choices, humans have learned to find common basic building blocks for all choices, set up
the interfaces between the basic building blocks, and then establish engineering methods or
frameworks to assemble these building blocks. The mappings between data types and visuals
can be customized and reconfigured online by a visual language called xDIVA-VML. There is
no need to write annotations or rule-like notations to specify the mapping. Some initial work
of xDIVA has been published in [1] as a tool paper.

xDIVA is built on an open source 3-D engine — Ogre[2], which is an object-oriented graphics
rendering engine. 3-D programming from basic libraries such as OpenGL and DirectX is con-
sidered difficult. A 3-D engine like Ogre considerably lowers the programming effort and time.
Ogre provides many 3-D effects, which enrich the possibility of visualization and improve the
visual quality beyond simple geometric shapes and colors.

This paper is organized as follows: Section 2 describes the background of xDIVA and a short
overview of xDIVA is given in Section 3. The design rationale and object-oriented framework
behind xDIVA are described in Section 4,5, and 6. Examples are shown in Section 7. Sections

8 and 9 complete the paper with related work and conclusions.
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2 BACKGROUND

The work presented in this paper is closely related to a popular research area called software
visualization. Software visualization research [3], [4] has been proposed to construct visual rep-
resentations of information from software systems based on their structure[5], size[6], history[7],
[8], or behaviors[9]. These tools visualize software metric data from measurement activities. The
software metric data are either presented in static, animated 2-D, or 3-D graphics. They can
be used to monitor the quality of source code during development and expose the anomalies
earlier.

Another branch of software visualization is run-time visualization. Some focus on visual
representations of performance analysis metrics such as memory usage, time spent in methods
or classes, etc. Examples include BLOOM [10], Jive [11], and Jinsight[12]. Some focus on visual-
izing programs with object perspectives with UML-like diagrams, which include JIVE [13] and
JaVis [14],! Although the purpose of these research tools vary, they are all aimed at helping

programmers or project managers to debug and understand their software.

2.1 Visuals, Data, and Bindings/Mappings

Most visualization techniques use a set of (animated) visuals such as images, pictures, colors,
or icons to exploit specific knowledge that users already have of other domains. The quality
and quantity of visuals often have a direct impact on tool usability. Well-designed visuals and
appropriate metaphors can help users understand data more effectively.

Since it is impossible to provide visuals to cover everything that might be of interest, a
visualization tool often needs to establish a scope for the data they can visualize so that the
quantity of visualization metaphors can be limited. Take the well-known visualization tool
Graphviz[15] for example, it is designed to visualize graph-like data so it can focus on the
graphical representations for node entities and edge entities that link nodes.

Although the quantity of visuals in a visualization tool is limited, it can be costly to implement
these visuals. The cost and time devoted to programming visuals can vary considerably de-
pending on the characteristics of an application domain, volume of data, aesthetic requirement,
etc. So, maximizing the reuse of visuals as-built is a common goal for visualization tools. There
are several common directions to approach the problem. In general, the objective is to seek out
methods to “customize” or “reconfigure” the mapping between data and the as-built visuals.
Research that addresses the customization of visualization can be found in [16], [17], [18], [19],

where [17] made a thorough survey of this topic. In [17], the flexibility of specifying the mapping
1. JaVis is not a 100% visualization tool because its visualization is displayed by UML Case Tool Together.
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between data and visuals are classified from “predefinition”, “annotation”, “association”, and
finally “declaration”. The earliest work that links program variables with parameters of visuals
which resembling xDIVA’s approach can be found in [20].

Overall, reusing the visuals as-built has been one of the major challenges in visualization
research. In general, the more complicated a visual is, the less reusability the visual can offer.
So, the ability to share visuals among visualization tools has always been a goal. However,
allowing users to reconfigure mapping is a key to the DVI problem. In the next section, more

details will be explained.

2.2 Visualization of Program Internal Behaviors

Program behaviors are divided into two parts: One is observable to users (aka program output)
and the other is internal behavior that is invisible to users but of concern to programmers. The
branch of software visualization research that addresses the visualization of internal program
behaviors is often called program visualization. However, most program visualization tools [21],
particularly algorithm animation, are limited in their use for educational purposes. They are
rarely come up in a programmer’s daily work because of the DVI problem.

DDD (Data Display Debugger)[22] is a debugging visualization tool which allows one to
see what is going on “inside” a computer program while it executes. From the best of our
knowledge, DDD could be one of the few program visualization tools to actually be used by
programmers. DDD is also a graphical front-end for command-line debuggers GDB but it also
does more. DDD is known for its interactive graphic data display, where a memory block
(object or struct) is displayed as a node (box) and pointers are displayed as directed edges. A
node is displayed as a box (fixed visualization), in which variables in the memory block are
arranged in a top-down layout and displayed in textual and numerical form. Arrays can also
be displayed in a table-like visualization. If program data matches some limited types, such
as a 2-D array of integers, DDD can send it to gnuplot to draw the array as functions in 3-D
curve lines.

DDD has been developed into a mature open-source tool. Using it to debug programs in
some domains can save considerable time and effort. Overall, xDIVA shares similar objectives

with DDD but differs in the visualization support.

3 BAsICc BUILDING BLOCK PRINCIPLES

The design rationale of xDIVA originates from within common human knowledge. When facing
infinite construction choices, humans have learned to find common basic building blocks for all

choices, set up the interfaces between the basic building blocks, and then establish engineering

October 6, 2014 DRAFT



JOURNAL OF IATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

methods or frameworks to assemble these building blocks. This knowledge can be explained
by a term — composability. Composability[23], in general, refers to a system design principle
that deals with the inter-relationships of components. A highly composable system provides
recombinant components that can be selected and assembled in various combinations to satisfy
specific user requirements. A component may cooperate with other components, but dependent
components are replaceable.

So, to approach such a human knowledge in visualization, xXDIVA needs to address two key
issues: Composability and the use of basic build blocks. Composability, however, is never as
easy as it may seem to achieve in programming. Decoupling data from visualization code is

the first challenge to overcome.

3.1 Is decoupling by model/view paradigm possible?

A visual is a shape drawn inside a rendering system by a piece of code. Typically, the shape is
controlled by some parameters or data. The poorest way to implement a visual is by directly
referencing the data in the code. Any dependency on data in the code limits a visual to render
only that data. Since in this poorest way of implementation, visualization code is completely
aware of the data’s memory size, structure, and distribution, let it be called “hardwired” if a
piece of visualization code is written as such. To decouple the code from data, it seems that
there are already a lot of coding tricks to resolve this issue, such as the Inversion of Control
(IoC) principle. Unfortunately, creating a piece of visual code decoupled from data is easier said
than done. For example, it is very common to write the following code, in which visualization

code is one of the behaviors of the class.

class binary_tree_node {
void draw() {
...// draw the center node
...// draw the left child pointer
...// draw the right child pointer
}
Although it is object-oriented, it is obvious that the visualization code is coupled with the
data type and thus not reusable by other types or problems. So, to further decouple the code,
it is common to introduce the popular model/view paradigm (which is mainly evolved from
the Model/View/Control (MVC) paradigm and is actually an observer design pattern). To adopt
the paradigm, the code must have an observer (aka view) to hold the visualization, as in
the following sample code. When registering an observer with a binary_tree_node object
(aka model), and the model is modified, update () of binary_tree_node_observer is then

invoked to redraw the visual.
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class binary_tree_node_observer {

binary_tree_node bt ; // *%x

void update () {
...// draw the center node based on bt
...// draw the left child pointer to bt.left

...// draw the right child pointer to bt.right

}

In principle, several observers can be registered with an object of binary_tree_node. So,
the views of binary_tree_node are configurable now. Although it is an improvement, the
dependency of visualization code to the data type binary_tree_node is still not removed.
Of course, you can use polymorphism to make bt become a pointer (see the line with comment
//*** ) to a base class of an inheritance hierarchy, which could extend the types to be used by
this observer to the inheritance hierarchy. However, in order to reuse the visualization code, you
need to make your data types become the subtypes of such a base class, which is not exactly a
good decoupling solution. Recall that MVC’s major concept is to separate the GUI code from
core computational (business) logic. It actually promises the benefits of easy maintenance and
portability but not reusability of views. Conclusively, model view cannot release you from
writing hardwired visualization code; configurable views to a specific data type are the major
benefits for doing so.

To broaden visualizations which are reusable by different applications, Graphviz’s meta
format DOT [15] shows a design choice that completely decouples the visualizations from
data. However, to draw your data by Graphviz, you need to translate your data into a DOT
file on your own. In other words, the visualization code of Graphviz depends on a meta file,

not any data types at programming level.

3.2 Maximum reusability with primitive types

One interesting finding from the work of xDIVA is to make a visual reusable, its shape can
only be controlled/parametrized by “primitive types” (integer, float, etc.) in its visualization

code. This finding can be simply explained. To draw a rectangle, the very basic APIs may be:

drawRectangle (int x,int y,int width,int height) { ... }
Such a fundamental API typically allows maximum reusability. For example, suppose you have
3D cube data and you want to draw it into a 2D rectangle, you simply slice the data of the third
dimension to reuse the visualization code. On the other hand, it is common to see additional

APIs are supported to promote OO principle such as:

drawRectangle (Rectangle rect) {...}
If your goal is to allow this visualization code to be reused, such a move is actually realized in

an opposite way. This API is only suitable for data of type Rectangle. By introducing more
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complicated data types to draw a shape, the reusability of the code is degraded. Furthermore,
suppose you want to implement a visualization code which can draw the visuals for a generic

binary tree node. The following API may be designed.

drawBinaryTreeNode (BinaryTreeNode node) {...}

This visualization code opposes the reusability because it depends on a type called BinaryTreeNode
and it is too complicated a shape to be a reusable unit.
In debugging scenarios, variables are unlikely to be structured to fit pre-defined models. It is
also impossible to predict all the types of variables and code them as a priori. So, how should
a visual for rendering BinaryTreeNode be implemented? The answer is “Don’t implement it

but compose it instead.”

3.3 Ultimate Basic Visuals

According to the observation above, xDIVA must implement a set of basic shapes as basic
building blocks, whose shapes are solely controlled by primitive-type parameters. Constructing
basic shapes in xXDIVA requires programming, debugging and testing. Such programming work
in general requires creating an adjustable mesh (composed by triangles) for the shape and
wrapping the mesh into a class. Although programming a basic shape is not hard (a cone
shape has 150 lines of C++ code), it should not need to be done frequently. Recall that in
principle it is impossible to implement all the visualizations as a priori. So, if too many basic
shapes are required to make xDIVA really usable, it is still a dead end.

Here, similar to searching for basic particles that make up matter, we introduce a type of

basic shapes called “Ultimate Basic Visuals.”

Definition 1. An Ultimate Basic Visual (UBV) is a shape which cannot be transformed and
assembled from other basic visuals. The transformation includes scaling and rotating a visual

on an XYZ-axis or setting the controlling parameters to extreme values.

For example, should we implement a rectangular cuboid with a shape that can be controlled
by three parameters width, length, height? The answer is no, because a rectangular cuboid can
be transformed by scaling a cube on one XYZ axis. So a rectangular cuboid is not a UBV but
a cube is. A frustum in Fig. 1 is another example of an UBV. By making R; = Rz, you can
make a cylinder and by making R, = 0, you can make a cone. An arrow shape like Fig. 2 can
be assembled from a cone shape and a cylindrical shape; so it is definitely not a candidate of
UBV. By introducing the concept of UBVs, the number of basic shapes is reduced considerably.

However, users can see that some non-UBVs are displayed as basic shapes. Non-UBVs are

October 6, 2014 DRAFT



JOURNAL OF IATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

Figure 1. A frustum as an UBV.

Figure 2. The arrow VM composed from a cone and a cylinder UBVM.

provided to users for the sake of convenience, since users may not possess the concept behind
UBVs.

Each UBYV, in general, is controlled by several 3D properties. Take a cube for example. A cube
shape can be determined by properties shown in Table 1. These properties are called default
properties. In addition to default properties, most shapes typically require additional parameters
to determine their shapes. For example, a sphere has a property called radius. A cone shape
has a radius and height. A pie UBV is shown in Fig. 3(a), which is controlled by additional
parameters 61,0, and h. To visualize data into a pie chart, 6;,05 for each section UBV can be
computed from the data of the object and then a pie chart like Fig. 3(b) can be constructed.
Also, by considering different values of h, the fancy visualization in Fig. 3(c) can be done in

such a compositional way.
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property
group parameters notes
relative
position position
(coordinates) rx,ry,rz at xyz-axis
xize
yszie size of
size szie bounding box
xscale scale factor
yscale of bounding
scale zscale box
primary
color r,g,b color
rotation
rotation pitch, yaw, roll degress
rotation by
rotation quaternion quaternion
transparency of
transparency trans visuals (0..1.0)

Table 1

The default parameters of an UBV.

Figure 3. (a) The pie UBV. (b) and (c) The pie-chart visualizations that can be assembled from

(a).

4 MAPPING ENGINE

Upon making visuals decoupled from data types (other than primitive types), the next challenge
is how to let data control visuals and let users compose visuals to make up a visualization
they want. Any data, eventually will be read, processed, and stored in the memory of a
computer program. When a program (debuggee) is stopped at a break point, a programmer
can probe/view/explore variables and variable structures interactively via a debug interface
or framework. xDIVA relies on plugins to communicate with the debug frameworks of Visual
Studio (C/C++) and Eclipse (Java, C/C++ via CDT). Fig. 4 shows the high-level architecture
of xDIVA. Releases and tutorials of xDIVA can be accessed at xDIVA’s website:

http://oolab.csie.ncu.edu.tw/wiki

In Visual Studio or Eclipse, xDIVA’s plugin provides a button called “visualize”. When a break
point is hit, a programmer can use the button to visualize a variable when visualization is

needed. In this section, an overview along with an example is given to describe the basic
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Figure 4. The architecture of xDIVA and debuggers

features of xDIVA.

4.1 A mapping example
When a variable is visualized the first time, a mapping dialog (see Fig. 5) pops up displaying the

variable names and values in the panel A. The functions of panel A are similar to a debugging
watch window in conventional IDEs. If a variable is a compound variable (such as an object,
an array, a pointer or reference), you can unfold a compound variable by clicking on the plus
icon (H). When an unfolding action is invoked, xDIVA talks to the plugins to retrieve more
memory contents from the debugger.

Suppose an object of a binary tree node bt (in Java) in the following
class bt {
boolean travel ;
bt left;
bt right;
i
is visualized. Suppose a programmer wants to visualize the bf object to satisfy the following
visualization requirement:
1) Use a ball with radius 50 to represent the variable travel. If travel is true, its color is red,
otherwise, the color is black.

2) Reference left and right are drawn as smaller balls (radius 25) attached to southwestern (-
50,-50,0)/southeastern (50,-50,0) corners of travel. When clicked, the ball shall emit a laser
at the object it points to.

In the beginning, panel B is empty. Panel B is called the editing area of a visual programming

language called xDIVA-VML. xDIVA-VML is a data-flow type visual programming language.
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Figure 5. The mapping dialog a binary tree node example.

The computation units of XDIVA-VML are called mapping nodes. A mapping node has input
ports (left-hand-side) and output ports (right-hand-side). As seen in Fig. 5, the data flow begins
from the variables in panel A. Linking a variable to a port of a mapping node can be understood
intuitively. For example, if you link an integer variable to the radius of a sphere, the variable
controls the size of the sphere.
In panel D, there are different types of mapping nodes categorized by their purposes. In
Fig. 5, category UBVM (Ultimate Basic Visualization Metaphor) is shown, which contains the
mapping nodes that render UBVs. To complete the visualization, mappings can be constructed
in panel B by:
1) Drag and drop a math mapping node from panel D.
2) Drag a link from variable travel to the math mapping node’s input port $0.
3) Set the math formula as ”$0 % 1.0”, so that the output of the math mapping node is 1.0
when travel is true and 0.0 when travel is false. xDIVA transfers boolean values into
0 and 1 and this math mapping node transfer integer values into float.

4) Drag a sphere UBV T and by default its initial relative location is (0,0, 0).

5) Drag a link from travel to T”s input port varname to tell xDIVA that visualization of
T represents variable travel.

6) Link the result of math node to sphere 7”s input port - red color (ranging fro m 0..1.0) of
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7)

8)

9)

10)

11)

12)

13)

RGB.

Drag a ball laser UBV L. A ball laser UBV renders the source of a pointer/reference by
a sphere and shoots a laser at its appointed object.

Open the location attributes of the ball laser UBV L (see panel C) and set the relative
location as (—50,—50,0). All input ports of a mapping node have default values if no
link is connected to them. If you want to set the values directly, it can be done by the
input port property window in panel C.

Drag a link from left to L’s var input port to let the left control the L's behaviors
and drag a link from left to L's varname to tell xDIVA that L represents the variable
left.

Drag a ball laser UBV R. Open the location attributes of the ball laser UBV R and set the
relative location as (50, —50,0). Drag a link from right to R’s var input port to let the
right control R's behaviors and drag a link from right to R's varname to tell xDIVA
that R represents the variable right.

Drag a vmcollector mapping node V' and drag links from the vm output ports from
T,L,Rto V. A vmcollector can collect an arbitrary number of vm objects and output
a type of vms, whose concept is similar to a vector type in OO programming.

Draga container_ubvmC and drag links from V to C. A container. ubvm can group
all the vm in vms under a scene graph node. The scene graph is a structure that arranges
the logical and often (but not necessarily) spatial representation of a graphical scene. In
addition, C' will mask and dispatch mouse events for T', L,and R. A click event to T, L,
and R will always be handled first by C' and thenC' will dispatch the event downward
to its child vm.

Drag a link from object bt to the varname of C to tell xDIVA that C represents the
compound object bt. So, when there is a pointer shooting a laser to this bt object, the laser

should target C' instead of T', L, R.

Once the mappings are done, a visualization of the bt object is shown in 6. In 6, only a bt node

will be visualized first. The two laser balls (for references left and right) can be clicked.

Once they are clicked, the variable pointed by left and right will be unfolded. A new bt

object will pop up new mapping dialog for you to specify the mappings again.

4.2

Mapping Visual Language (xDIVA-VML)

What xDIVA proposes in this example is a visual programming language (VPL) for constructing

a visualization. Typically, visual programming languages are designed and adopted for the

following reasons:
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M DIVA 2007

Tlght

NewVM

Figure 6. The visualization of bt.

o easy to learn and use
e no need to memorize syntax or fix compilation errors as in textual-based programming
languages

« easy to debug
Some of the popular visual programming languages are lego’s NXT-G[24] and scratch[25]. It is
comparatively much easier to start programming from these VPLs because these VPLs typically
let users create programs by manipulating program elements graphically rather than by specify-
ing them textually. However, VPLs are rarely used as general-purpose programming languages
due to their limitations, particularly when problem complexity and scale are increased.

xDIVA introduces xXDIVA-VML for a very practical reason: Programmers are already impeded
by compilation errors and runtime errors as a daily basis. If using a debugging visualization
tool forces programmers to learn and write a new programming language, fix syntax errors,
and debug the runtime errors, this tool is simply too inconvenient and troublesome to use. With

xDIVA-VML, a mapping should be easily completed the first time within seconds or minutes.

4.2.1 Data-flow Semantics

Unlike most VPLs which are control-flow based, xXDIVA-VML works as a data-flow system. Data
values and data properties flow from the lefthand side, starting from visualized variables, to
the righthand side. A mapping node (see Fig. 7) is responsible for accepting values and properties
from its input ports and working as a computation unit to produce results in its output ports.

There is only one link allowed to connect to an input port but there are many links allowed to
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output
ports

Input

ports mapping

node

Figure 7. An abstract mapping node.

start from an output port. There are no cyclic links permitted. These mapping nodes and links
constitute a mapping net.

The computation unit of a mapping node can be responsible for rendering a 3D shape
(rendering-based) or not (non-rendering based). A rendering-based mapping node is called
a vm(Visualization Metaphor) node, which in general has all the default properties in Table 1
as input ports and output ports. Once a v mapping node is executed, a 3D shape is constructed

in the scene and a vm object is produced in an output port for other mapping nodes to utilize.

4.2.2 Rendering based mapping nodes
Reference VM

Besides the rendering based mapping nodes that construct UBVs, another kind of basic visual
is reference vm. Reference vm, as the name implies, is used to render a pointer/reference.
Currently, there are four kinds of reference vm which are implemented (shown in Fig. 8). A
pointer/reference is a variable as well. So, in visualization, a programmer may choose any shape
to represent a pointer. The first three reference vm allow you to install any vm to represent the
pointer variable. In the previous bt example, a ball laser is an exact composite vm in which
laser reference vm has a sphere installed as the pointer-side vm. An orbit reference vm utilizes
the animation power of a game engine, in which, when pointer-side vm is clicked, an ogre head
appears to orbit the target object.

The first three reference vms are all designed to unfold a pointer when pointer-side vm is
clicked. When a pointer is unfolded, the target object is retrieved from the debugger and the
visualization of the target object is added to the scene. The last auto-unfold reference vm is
especially important for a language like Java. An auto-unfold reference vm, as the name implies,
would unfold its pointer automatically when it is rendered in the scene. An auto-unfold vm
has no pointer-side vm but has a location p. When its target object vm is added to the scene, the
target object um is moved to the location p. Auto-unfold reference vms are frequently used for
Java array. Unlike C/C++, Java array elements are all references. It is natural to use auto-unfold

reference vm to render Java array elements.
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Figure 8. Basic reference vms.

4.2.3 Non-rendering based mapping nodes

In many visualizations, it is common that the relationship between data values and visuals is

not straightforward. For example, drawing a pie-chart from three data values a, b, ¢ involves

a b c
a+b+c’ a+b+c’ at+b+c

computation of ( ). So, xDIVA-VML must provide auxiliary mapping nodes
to support the various needs of visualizations. Due to the limited space, only mapping nodes

worthy of mention are described here.

Math mapping node

A math mapping node is a frequently used mapping node in xDIVA-VML. Many data values
can be linked to a math mapping node and they are indexed as $0,$1,$2... consecutively. Clicking

the math node allows you to enter a formula using $0,$1,52... to compute a math formula.

Container mapping node

A container mapping node is another frequently used mapping node in xDIVA-VML, which is
a key to the composability mentioned in the previous section. Just like many graphical editing
applications which can group objects into a composite one, it is essential to group a set of
ums into a composite vm. What a container mapping node does is to recompute the bounding
boxes of child vms and glue them in a scene graph. A scene graph is a general data structure
commonly used by vector-based graphics and 3D game engines that arranges the logical and
spatial representation of a graphical scene. A container mapping node is also responsible for

dispatching mouse/keyboard events to its child vms recursively.
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String composition mapping node
When a program or an algorithm is wrong, appropriate visualizations can manifest the errors
easily. However, when an error is found, a programmer needs to trace the problem back to its
source code. If clicking a visual can display important information in the code, such as object
id, debugging efficiency can be greatly increased.

xDIVA does not predefine any clicking message/behavior for each vm. Instead, an input
port called “_vm_clickmsg” can be used to specify the clicking message with the help of
a string composition mapping node. This mapping node is similar to math mapping node,
which allows arbitrary links to connect to its input ports and these inputs are indexed from
$0,$1,$2...etc. A user can use these inputs to compose a string. For example, in the pie-chart
visualization, when a pie UBV is clicked, we want a message like “Percentage ratio: x%” to be
displayed. First, we use a math node to compute the value x and then link it to a string node
at $0 input port. Right click the string node to enter the string “Percentage ratio $0%” and it

is done.

Clock mapping node

xDIVA is built on an open-source 3D engine. Animation is the major strength of such technology.
An animated visualization can be more informative than a static one in many cases. For instance,
to visualize a variable named speed, people would find that connecting the variable to any
static 3D shape is awkward. The concept of speed, on the other hand, can be better visualized by
animated visualizations, such as spinning a cube faster if speed’ s value is larger. Such a need
can be satisfied by a clock mapping node. A clock mapping node has four input ports (low,
high, increment, time_interval) to set up. It works as a counter to generate values
repeatedly from Iow to high by the increment in every time_interval seconds. Use a
math node to compute 1/speed and then set the clock mapping node as (0, 360, 10, 1/speed).
The clock mapping node generates 0,10,20,....,360,0,10... repeatedly every 1/speed second. To

make a cube spin, simply link clock node’s output to one of cube’s rotation input ports.

5 TYPE MAPPING TO MEMORY BLOCK STRUCTURE

When a break point is hit, visual debuggers typically provide a “watch” feature to display the
contents of interested variables in a watch window. Since it is often not necessary to display
the whole memory of a debuggee, a debugger only retrieves and updates variables of interest
which could be related to a bug. In summary, a programmer can add variables to the watch
list or unfold an array, an object, or a pointer to retrieve the memory block. There is, however,

some inconvenience to this approach. Take DDD for example. Suppose you have a linked list
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which contains 100 nodes. To visualize the linked list, you need to display the head node of
the linked list first and then click the pointer variables one by one. Basically, the features of
xDIVA described in previous sections mimic this approach. However, in practice, if allowed,
most programmers would expect much more. For example, every time a debuggee is rerun
or a new break point is hit, the whole linked list should be updated and visualized again

automatically. This simple goal, however, introduces a lot of problems that must be overcome.

5.1 Dependency of Visualizations

In order to explain the contents in this section, a representative example is given here to show
how complicated visualizations can be and how these problems are overcome in XxDIVA. The
representative example is graph data structure. Following is a common implementation of two
basic elements node and edge in a graph.
class node {
int id ;
edge edges[3] ;

}

class edge {
int cost ;
node start ;

node end ;

}

Suppose there are three node objects n1,n2,n3 and three edge objects e12, €13, e23 instantiated,
where ¢, ;is an edge between n; and n;. A common visualization is to draw n; as a ball and e;; as
a line between n; and n;. Now, suppose we want to visualize them one by one manually. Since
drawing e;; requires the location of n; and n;, an attempt to visualize e;; before n;and n; is
doomed to fail. This problem introduces the concept of visualization dependency. In hardwired
visualization, the problems of visualization dependency are typically solved in the code. In
xDIVA, in order to repaint the visualizations automatically, we must deal with visualization

dependency.

Definition 2. A visualization mapping v is a mapping net which transforms a set of data values

into a set of (animated) 3D shapes.

Let’s continue the example. Suppose njand ns are successfully visualized as balls . Let the

uvm of n; be B;. Next, we attempt to visualize e, from the debugger plugin. start and end
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Figure 9. Existing vm mapping nodes to construct e12.

of eq2 are n; and ny respectively and already have vms Biand B, as their representative visuals.
So, there are two tasks which must be completed by xDIVA:

1) When ey5 is visualized, its attributes start and end are retrieved.

2) xDIVA detects that start and node already have representative vms. They should not

be unfolded further to construct new visualizations.

3) How is a line to be drawn between Bijand By?
xDIVA’s solution is to display two black mapping nodes both labeled “existing vm mapping
node” in the edit area (see Fig. 9). Users can treat these two mapping nodes as vm of B; and
Bs. As in the figure, a line UBV can use the location of B; and B; to draw a 3D line to finish

the visualization of eq».

Definition 3. A visualization mapping v is said to be dependent on u (denoted v < w) if v must
use u's vm properties to determine the shape/location/color/rotation (aka basic properties) for

rendering.

Tools such as DDD which provide only fixed visualizations and do not allow you to construct
a visualization seem to be able to avoid the visualization dependency problem. However, for
tools that claim to be capable of constructing arbitrary visualizations, ignoring the visualiza-
tion dependency causes failure as per the above simple example. In addition, visualization
dependency is crucial when we want to automatically visualize a set of objects. Given a set of
mapping nets, the order of visualizations can be computed by simply parsing the mapping net

to determine the dependency.

5.2 Type Mapping

The visualization of the graph example, of course, can be manually constructed piece by piece
as described, but the whole process is exhausting. In most visualizations, the visualizations of

Bi, By, Bs are likely to be the same. Once a mapping of B; is specified, typically it would be
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applied to all ¢ in the memory. To address the problem, xDIVA introduces a concept called type
mapping. With type mapping, visualization mapping can be automatically applied to homoge-

neous memory blocks. This is an important key to automatic visualization.

Definition 4. A type visualization mapping t is a mapping net which transforms a set of data

types to a set of (animated) 3D shapes.

Note that, Definition 4 is different from Definition 2, where data values are replaced by data
types. To specify a type mapping in xDIVA of a type t, you just need to visualize an object of ¢
first. For example, in Fig. 10(a), when the first bt object is visualized, a user can right click the
bt object to bring up a type mapping dialog. In type mapping dialog, variable values are no
longer displayed. If attributes of a class is a pointer/reference or array, one level of unfolding
is automatically done (see Fig. 10(b)) for the users. If an attribute is a pointer/reference to a
type s and s already has a type mapping, a black mapping node called “existing type mapping
node” will automatically be displayed in the dialog. That is, visualization dependency between

two type visualization mapping also exists.

Definition 5. A type visualization mapping s is said to be dependent on a type mapping ¢
(denoted s < t) if s must use t's vm properties to determine the shape/location/color/rotation

(aka basic properties) for rendering.

In practice, type mapping is more commonly used for most visualization tasks because
homogeneous objects are too common once data is processed and stored in the memory. Fig.
11 shows the difference between a type mapping and a normal mapping. The type mapping

features suggests that
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If homogeneous memory blocks exist, specifying the mappings from data types to visuals

instead, not data values,

5.3 Memory retrieval bot

So, as shown in Fig. 11(b), xXDIVA must allow programmers to retrieve memories of interest so
that all the homogeneous memory blocks can be fit to the type mappings to create visualiza-
tions automatically. This can be an easy task if you are writing hardwired visualization code.
Unfortunately, a tool like xXDIVA must deal with arbitrary memory distribution from different
programs.

Once data are stored in memory, the data is seldom uniformly distributed in contiguous
memory addresses. Take a linked list for example, a linked list node can only be accessed from
the node that precedes it. To address the problem, xDIVA allows you to specify a memory
retrieval bot. A memory retrieval bot can be initiated by visualizing a variable as a start (see Fig.
12(a)). Then, users can specify the paths (by giving the names of pointer/reference variables)

for the bot to traverse,retrieve the memories and stop.
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6 LAYouT

Layout algorithms are algorithms that deals in the arrangement of visual elements in a scene.
Any visualization tools cannot ignore layout. Popular tools such as Graphviz, iGraph, Zest [26],
[15] have built a lot of layout algorithms for specific domains. One major problem to reuse
these algorithms is the lack of unified interfaces.

In xDIVA, layout is needed at three places:

1) The arrangement of logical and spatial representation in a composite vm: When a set of
child vms is grouped into a composite vm, the positions of child vms can be set manually
by users. The positions of child vms can also be automatically determined by a container
which comes with a layout algorithm.

2) A new vm created by clicking a reference vm.

3) The arrangement of logical and spatial representation in a scene: When a set of vms
is visualized in the scene, if their positions are not bound to data values, they can be
arranged automatically in an aesthetically pleasing way by a layout algorithm.

Primary layout concern should focus on item 3. In an earlier version of XxDIVA, a set of APIs
for manipulating the vms in the scene was constructed. Then, some simple layout algorithms

(e.g., binary tree) were implemented for the purpose of showcasing xDIVA. Unfortunately,
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following such a design, the layout algorithms must be compiled with xDIVA, which prevents
layout algorithms from being easily added to xDIVA. xDIVA’s upcoming solution is to allow
other tools or libraries to easily hook on, particularly iGraph and Graphviz. For example, by
default, Graphviz’s dot operates in filter mode, reading a graph from stdin, and writing the
graph on stdout in the DOT format with layout attributes appended. If you run dot -Tdot, it
will generate an attributed DOT which adds the layout coordinates of nodes and edges. These

coordinates (albeit of 2D) can be parsed to place the vms in xXDIVA’s 3D scene.

7 EXAMPLES AND EVALUATION
7.1 Examples

In Fig. 13, screen shots of several examples are shown. Fig. 13(a) shows xDIVA is still capable
of visualizing data in the conventional way. Using these vms makes the visualization power
of xDIVA equal to DDD. In Fig. 13(b), a cube is used to render an image pixel. By linking
the RGB values of a color pixel to the cube’s color properties, the array of image pixels are
visualized. Using the string composition mapping node, when a cube is clicked, the RGB values
are displayed as a string ”(R, G, B)”. Fig. 13(c) continues the example with a larger image. In
Fig. 13(d), a 2D array of integers are visualized. Each integer in the array element is linked to
a cube’s zsize property and color properties so that the larger the integer, the longer the cube
and brighter the color.

Fig. 13(e) demonstrates the cases that locations of vms are controlled by the visualized vari-
ables. The underlying program of this example to solve the traveling salesman problem (TSP).
In many application domains, such as computational geometry, wireless sensor networking
problems, etc., linking coordinates of entities to a visual’s location properties is a common
visualization mapping. To make the visualization more exquisite, a green flat board is added.
Such a green flat board is called a background vm, the purpose of which is to enhance a
visualization. Background vms can be added to the mapping net but typically there are no
links from data to these vms. The properties of this green flat board can be set manually from
the property window C in Fig. 5.

Fig. 13(f) shows a practical application of xDIVA in an area called Electronic Design Automa-
tion (EDA)[27]. EDA companies produce software tools for designing and producing electronic
systems ranging from printed circuit boards (PCBs) to integrated circuits (IC), which are also
known as CAD tools in the IC industry. The real data structures of a VLSI design describes
layers of 2D polygons, which is difficult to debug without visualizations. The visualization in

Fig. 13(f) is a VLSI polygon layout which renders similar data structures from an EDA tool.
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Figure 13. Six visualization examples.

So far, it seems that no complicated shapes are composed from the simple ones for debugging
visualizations. In our opinion, debugging visualization is fundamentally different from general
visualization. The main purpose of debugging visualizations is debugging. So, as long as the
purpose is fulfilled, it doesn’t matter if the visualizations are exquisite or not. However, xDIVA,
in principle, can be used as a general visualization tool. More works will be done in this

direction.

7.2 Evaluation on basic building block principle
The results of this research can be mostly concluded by the key xDIVA features. They are:

 Ultimate basic visual principle
o The design and implementation of xXDIVA-VML
o The mapping configuration GUI for xDIVA-VML
o Type mapping concept and its support such as type existing mapping nodes.
o Visualization dependency between visualization mappings
From the beginning of xDIVA’s development, many examples from different domains have been

chosen to test xDIVA (see Fig. 2). For example, the graph problem is such a representative
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Application Domains Algorithms or Data structures
Basic data structures trees (binary trees), graph, array, ....
Computational geometry convex hull problems, .....
General algorithms travel salesman problems, ...
Common charts histogram, bar chart, pie chart, ....
Networking algorithms radio network problems, ...
Image processing image pixel array, region growing,...
Table 2

Application domains and examples from the domains.

The Growth Rate of
# of UBVs vs. # of visualizations

2008/1/1 2009/1/1 2010/1/1 2011/1/1 2012/1/1 2013/1/1

# of UBV # of visualizations

Figure 14. The growth rate of # of UBVs and # of visualization.

example that xXDIVA must introduce an existing mapping node and type existing mapping
node to xDIVA-VML. Sometimes, existing UBVs cannot compose a visualization suitable for
the example; this is when a new UBV is implemented. For example, when trying to visualize
a radio network problem, a ring shape UBV is implemented so that visualization can show
the communication radius of a radio node. We browse the xDIVA’s version control database
and extract the date when a UBV was implemented. In Fig. 14, the number of UBVs and the
number of visualizations through these years are compared. Apparently, the number of UBVs
increases very slowly, which support the assertion that the basic building block principle is the

correct direction in which to continue.

8 RELATED WORK

Among the research tools mentioned in Section 2, Lens [28] is a debugger-based visualization
system that is worth mentioning. It is an early tool that attempts to bridge the gap between
debugger and algorithm animation systems, such as [29], so that the work does not limit
their use in pedagogy. The focus of Lens is to produce animation by associating animation

actions to source code where interesting event animation commands are attached to debugger
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breakpoints. The problems and difficulties that could be encountered when using debugger-
based systems for visualization have been well and thoroughly studied. Simple mapping can be
configured in a pop-up dialog, such as associating variable values with the positions of graphic
objects. Although Lens focuses on algorithm animation (where graphic objects are represented
by very simple shapes) and does not address the arbitrary visualization interpretations, it is
an influential work on later debugger-based visualization systems.

In general, debugger-based visualization systems do not necessarily include algorithm ani-
mation capability, though algorithm animation is one of the debugging-aid approaches. More
recent research for algorithm animation includes JIVE[11], SWAN[30], JAWAA [31], LIVE[32],
SKA [33], etc. These tools, however, are mostly limited to educational purposes.

Some systems, such as jJGRASP[33], JIVE [13] and JaVis [14], provide limited views for data
structure visualization and place more emphasis on UML-style visualization

The large number of possible visualization variations is a problem faced by all visualization
tools. As described in previous sections, it is expensive and impractical to build pre-defined
visualizations for each task. So, suitable visualizations ought to be developed on demand. Online
mapping configuration or customization of visualization is a goal pursued by all visualization
tools. Much of the research in the field of software visualization [3], [4], [6], [34], [35] which
supports visualizations for software metrics can be configurable in different degrees, within the
limits of model-view paradigm. For example, Vizz3D [34] proposes a model-view-scene-controller
paradigm, where the bindings are configurable and specified in an XML script. Different
paradigm variations, such as model-scene-controller and model-view-controller, are also studied in
this research area. In general, the model-view approach is inapplicable in debugging visualization
because the data produced in debugging has no models to which it should conform. In other
words, software visualization research has developed a clear knowledge and understanding
of what analysis data (e.g. software metric) should be collected and organized. The mapping

flexibility is considered constrained within the paradigm.

9 CONCLUSIONS AND FUTURE WORKS

The initial idea of XDIVA has been published as a tool paper in [1] and its support for program
animation was also published as a tool paper in [36]. In this paper, major design principles
that make xDIVA different from other visualization tools and its major technical advantages
are described.

So far, the lines of code of xXDIVA already reach 80K. To increase the tool usability, xDIVA

began with a debugger front-end called Minerva and now has two plugins for Visual Studio
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and Eclipse. Maintaining a visual program language like xDIVA-VML is not an easy task but
we believe it is the right direction to commit ourselves to.

xDIVA-VML is still a growing language. In principle, a visual programming language lowers
the learning curve and reduces the programming efforts, but its expressive power is compro-
mised. So, it is possible that some visualizations may not be achieved by current versions
of xXDIVA-VML and UBVs. Currently, some part of xDIVA is under refactoring so that new
mapping nodes or new UBVs can be added more effortlessly and can be contributed outside

the xDIVA team.
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