
Chapter 11

Clock and Power Routing

Specialized algorithms are required for clock and power nets due to strict
specifications for routing such nets. It has been noted that it is better to de-
velop specialized routers for these nets rather than over-complicate the general
router. In the worst case, these special nets can be hand-routed. Currently, in
many microprocessors, both of these nets are manually routed and optimized.
However, as chip frequency moves into the multiple gigahertz range, the clock
skew budget will become smaller and smaller and it will be not be possible to
design and route clock without the help of sophisticated and accurate clock
routing tools. Similarly, due to large amounts of power that needs to be pro-
vided to microprocessors, power nets must be very accurately designed and
simulated to predict the power availability in different parts of the chip. As a
result, power routing and analysis will increasingly depend on CAD tools.

In synchronous systems, chip performance is directly proportional to its
clock frequency. Clock nets need to be routed with great precision, since the
actual length of the path of a net from its entry point to its terminals deter-
mines the maximum clock frequency on which a chip may operate. A clock
router needs to take several factors into account, including the resistance and
capacitance of the metal layers, the noise and cross talk in wires, and the type
of load to be driven. In addition, the clock signal must arrive simultaneously
at all functional units with little or no waveform distortion. Another impor-
tant issue related to clock nets is buffering, which is necessary to control skew,
delay and wave distortion. However, buffering not only increases the transistor
count, it also significantly impacts the power consumption of the chip. In some
cases, clock can consume as much as 25% of the total power and occupy 5-10%
of the chip area. Typically, a fixed buffered clock distribution network is used
at the chip level. At a block level, a local clock routing scheme ensures mini-
mal skew and delay. The scheme used in each block can differ, depending on
the design style used in the block. The clock routing problem has significant
impact on overall chip design. Clock frequencies are increasing quite rapidly.
Note that current microprocessors can operate at 500 Mhz to 650 Mhz. It is
expected that 1.5 - 2.0 Ghz microprocessors will be available within two to

418 Chapter 11. Clock and Power Routing

three years (See Chapter 3 for SIA roadmap).
Compared to clock routing, power and ground routing is relatively simple.

However, due to the large amount of current that these nets carry, power and
ground lines are wide. Concerns such as current density and the total area
consumed make it necessary to develop special routers for power and ground
nets. In some microprocessor chips, power and ground lines use up almost
an entire metal layer. Power and ground lines are also used to shield some
signal lines. This is done by routing a signal between two power (and/or
ground) lines. This reduces the cross-capacitance between the signal line and
its adjacent signal lines. As chip design moves into low voltages, power and
ground routing will become a even harder design challenge. In this chapter, we
will discuss the problems associated with clock, power and ground routing and
present the basic routing algorithms for these special nets.

11.1 Clock Routing

Within most VLSI circuits, data transfer between functional elements is syn-
chronized by a single control signal, the processing clock. The clock synchro-
nization is one of the most critical considerations in designing high-performance
VLSI circuits. In the case of microprocessor design, the clock frequency (in
MHz) directly determines the performance or the MIPS (Million Instructions
Per Second) of the microprocessor.

In this equation, NIPC denotes for Number of Instructions issued Per Cycle.
NIPC depends on the architecture of the processor, RISC versus CISC, and
the compilers used for the system. Most modern microprocessors are capable
of multiple issue, and some can issue as many as five instructions per cycle.
Consider a processor, which has a clock frequency of 200 MHz and can execute
two instructions per clock cycle, thus giving it a 400 MIPS rating. If the clock
frequency of the processor can be increased to 400 MHz, 800 MIPS performance
can be obtained. In I/O and memory buses, the clock frequency determines
the rate of data transmission. The data transmission rate is determined by
the product of the clock frequency and the bus width. Thus, it is desirable to
design the circuit with the fastest possible clock. However, increasing the clock
frequency of a chip is a complicated affair.

The clock signal is generated external to the chip and provided to the chip
through the clock entry point or the clock pin. Each functional unit which
needs the clock is interconnected to the clock entry point by the clock net.
Each functional unit computes and waits for the clock signal to pass its re-
sults to another unit before the next processing cycle. The clock controls the
flow of information within the system. Ideally, the clock must arrive at all
functional units at precisely the same time. In this way, all tasks may start
at the same time and data can be transferred from one unit to another in an
optimum manner. In reality, the clock signals do not arrive at all functional

11.1. Clock Routing 419

units simultaneously. The maximum difference in the arrival time of a clock at
two different components is called clock skew. Clock skew forces the designer
to be conservative and use a large time period between clock pulses, that is,
lower clock frequency. The designer uses the clock period which allows for log-
ical completion of the task as well as some extra time to allow for deviations
in clock arrival times. If the designer can be provided a guarantee that the
maximum deviation of the clock arrival time is small, then faster clocks can
be used. The smaller the deviation, the faster the clock. Thus, controlling the
deviation of signal arrival time is the key to improving circuit performance.

In the following sections, we will study the basics of clock design in a digital
system. We will present several algorithms that have been proposed for solving
various problems associated with clock nets. We will restrict ourselves to single
clock systems, and briefly mention the multiple clock systems.

11.1.1 Clocking Schemes

The clock is a simple pulsating signal alternating between 0 and 1. The clock
period is defined as the time taken by the clock signal to complete one cycle
(from one rising edge to the other rising edge). Clock frequency is given as

where is the clock period which is shown in Figure 11.1.
Digital systems use a number of clocking schemes including single-phase

with latches or edge-triggered flip-flops and double-phase clocking with one or
two latches. The most common latch is a D-latch which is an storage element.
It has data D and clock CLK inputs and a data output of Q. While CLK is
high, Q follows D, changing whenever D changes. While CLK is low, Q remains
constant, holding the last value of D (Figure 11.2(a)). An edge-triggered D flip-
flop has the same inputs and outputs as the D latch, but Q changes only on
the rising or falling edge of the CLK (Figure 11.2(b)).

In single phase clocking with latches, the latch opens when the clock goes
high; data is accepted continuously while the clock is high; and the latch closes
when the clock goes down. Single phase clocking schemes are not commonly
used because of their complicated timing requirements, but some high-end VLSI

420 Chapter 11. Clock and Power Routing

designs still use this scheme. The double-phase scheme uses two latches; one
is called the master and the other the slave. The data is first captured by the
master latch and then passed on to the slave latch.

The design of a clock system, as shown in Figure 11.3, must satisfy sev-
eral timing constraints as explained below. When a clock signal arrives at a
sequential register, it triggers the data from one sequential register set to the
next through a logic unit. This unit performs manipulations of data in an ap-
propriate functional manner. For simplicity and without losing generality, we
will assume that the clocking scheme is edge-triggered.

The minimum cycle time must satisfy :

Where the flip-flop delay is the time from the clock edge that captures the
data to the time that the data is available at the output of the flip-flop, time

is the maximum delay through any logic block between two flip-flops, and
setup time, is the amount of time the inputs of a flip-flop should be stable
prior to the clock edge. Finally, is the worst-case skew between the clock
signals, and the maximum amount of time the clock of the receiving flip-flop
can precede the clock of the sending flip-flop.

11.1. Clock Routing 421

Another constraint is the hold time, which is the amount of time the
input must stay stable after the clock edge to guarantee capturing the correct
data. To guarantee that the data is captured, the clock width must be greater
than the hold time:

As a general rule, most systems cannot tolerate a clock skew of more than 10%
of the system clock period. As a result, all clock lines must have equal lengths
from clock entry point to a component, in order to minimize or eliminate clock
skew. It is obvious that in the absence of a proper clock distribution strategy,
different clock lines can have greatly varying lengths. This variation in length
leads to large skews and delays. Skew is also introduced by the variations in the
delay of clock buffers throughout the system because of the process-dependent
transistor and capacitive loading. Skew causes uncertainty in the arrival of
the clock signal at a given functional unit. If it can be guaranteed that the
clock signal always arrives at a given storage element a predetermined amount
of time earlier than it arrives at another storage element, design techniques
can be employed to compensate for such pre-arrival of clock signal. But the
nature of the clock skew is such that the designer does not know which stor-

422 Chapter 11. Clock and Power Routing

age elements will receive the clock early and which storage element will receive
it late. There are two reasons for this uncertainty. First, the logic design is
usually done before the chips are laid out, so the relative positions of storage el-
ements with respect to the clock buffers are not known to the designer. Second,
the random variations in the clock buffer delays, which are due to fabrication
process dependent device parameter variations.

There are three key steps in designing high performance circuits. The first
step in making a design operate at a high clock frequency is to employ a fast
circuit family. With faster circuits, a given amount of logical functions can be
performed in a shorter time. The second step is to provide a fast storage ele-
ment (latch, flip-flop, register) and an efficient clocking scheme. The third step
is to construct a clock distribution scheme with a small skew. As circuits be-
come faster and cycle time is reduced, the actual maximum skew time allowed
is reduced. While selection of faster circuits elements is a logic design decision,
reducing clock skew and efficient clock distribution is within the realm of phys-
ical design. In the following, we consider the factors that influence design of
efficient clock distribution schemes.

11.1.2 Design Considerations for the Clocking System

Clock signal is global in nature and therefore clock lines have to be very
long. The delay caused by long wires is due to their capacitance and resistance.
Long wires have large capacitances and limit the performance of the system.
At low levels of integration, gate capacitance is much greater as compared to
the interconnect capacitance and therefore need not be considered. For high
level of integration, however, the gate capacitance is much smaller as compared
to the interconnect capacitance and as a result, interconnect capacitance must
be taken into account when clock wires are routed. For example, in
nMOS technology, the gate capacitance is equal to capacitance of 1 mm of
wire. Assuming 5 mm side dies, few nets are 1 mm long. On the other hand,
in CMOS technology, the gate capacitance is equal to only 0.1 mm of
wire. Thus gate capacitance is very small as compared to the capacitance of
the long clock line, which may have to traverse as much as 25 mm. In addition
to large capacitive loads, long wires also have large resistances. The resistance
of a conductor is inversely proportional to its cross-sectional area. As chips
are scaled down, the resistance per unit length becomes a major concern. The
delay caused by the combined effect of resistance and capacitance is called
the RC delay, which increases as the square of the scaling factor. In a given
technology, RC delay cannot be reduced by making the wire wider. Although,
R is reduced, but correspondingly C is increased. One effective way of reducing
RC delay is the use of buffers (repeaters), which also help to preserve the clock
waveform. If RC delay of a clock line is 4 × 4 units, then dividing the line in
four equal segments and inserting buffers, the total RC constant is reduced to
1×1 + 1×1 + 1×1 + 1×1 = 4. In this way capacitance is not carried over and
that is how buffers help in reducing delay. The buffers, however, have internal
delays, which must be taken into account when computing the total delay. In

11.1. Clock Routing 423

addition, buffers consume area and power. Despite these disadvantages, clock
buffers play a key factor in the overall layout of high performance designs. In
some processors, clock buffers may occupy as much as 5% of total area and
may consume a significant amount of power. The problem of buffer insertion
has significant attention and good algorithms are now known for both uniform
and non-uniform lines [DFW84, WS92].

Buffers could be used in two different ways in the clock tree. One way is
to use a big centralized buffer, whereas the other is to use distribute buffers
in the branches of the tree. Figure 11.4 (a), and (b) illustrate both buffering
mechanisms.

In case of distributed buffer, it is important to use identical drivers so that
delay introduced by all the buffers is equal in all branches. In addition, it is
important to equalize the load so that every driver sees the same capacitive
load. The clock skew may still be there due to the mismatches among the
drivers because of the device parameter variations across the chip. Using the
identical layout for all the drivers and placing them next to each other and in the
same orientation on the chip reduces the driver delay mismatch. Placing them
in the same orientation guarantees that all are affected similarly by orientation
dependence of the fabrication processing steps.

From the skew minimization point of view, the large centralized buffer is
better than the distributed buffers. However, the area and power consideration
are among other criteria that drive selection of the buffering mechanism.

In addition to RC delay, if the lines are sufficiently long or operate on high
frequencies, then inductance also becomes important and clock lines behave
like transmission lines, thereby changing the delay model. Transmission line
behavior becomes significant when the rise time of a signal is less than or
comparable to the transmission line time-of-flight delay The rise time is
defined as the time required for the signal to move from 10% to 90% of its final
value. The time of flight is expressed as

where is the line length, and is the propagation speed. The rise time of a
signal is determined by two factors: the rate at which the clock driver is turned
on and the ratio of the driver source resistance to line impedance. In present
CMOS systems, transmission line properties are significant only at the module
and board levels; bipolar circuits require transmission line analysis at the chip
carrier level and beyond; GaAs technology requires transmission line analysis
even for on-chip interconnections.

11.1.2.1 Delay Calculation for Clock Trees

The exact computation of the RC delay of a clock tree is quite difficult. It
is, however, not very difficult to approximate the delay. We will use a simple
method for delay calculation for RC tree networks using the Elmore delay
model [LM84b]. We follow the discussion presented by Tsay [Tsa91]. We will
compute the delay for both buffered and unbuffered clock trees.

424 Chapter 11. Clock and Power Routing

Let T be an RC tree, be the node capacitance and be the resistance of
edge . The edge between node and its parent is referred to as edge . Note

since root (node 0) has no parent. Let IS(i) be the set of immediate
successors of node , that is, IS(i) is a set of nodes adjacent to node and
does not contain its parent. Let denote the subtree formed by node i and
its successors.

For an unbuffered tree, the total capacitance of a subtree can be defined
recursively as:

Let N(i,j) be the set of nodes between nodes i and j, including but excluding
. The time delay of the clock signal from root (node 0) to a node is given by:

11.1. Clock Routing 425

The time delay from any node i to one of its successors can be computed as:

It is easy to see that for intermediate node between and , the delay is given
by:

Thus time delay for an unbuffered tree can be computed in linear time using a
depth first search.

For buffered trees, there are several different equivalent circuit models for
the buffer as shown in Figure 11.5. Let denote internal delay of the buffer,

denote its output driving resistance, and denote its input capacitance.
The only difference between a buffered RC tree and a unbuffered RC tree is
the branch delay which accounts for buffer delay. The capacitance for a
buffered RC tree is given by:

Similarly delay between node and node can be computed using:

There are several ways of modeling RC trees, some of them are shown in
Figure 11.6. More widely used model is the as shown in Figure 11.6(b).
Using one branch is modeled as shown in Figure 11.7. From Eq. (11.1),
and by lumping the delay, we can compute the delay of a node as

Where is a immediate successor of and is the leaf node. Our delay model
is now complete as it specifies all the resistances, capacitances and delays, so
that we can compute the delay from root to leaf.

426 Chapter 11. Clock and Power Routing

11.1.3 Problem Formulation

Given the routing plane and a set of points lying within
the plane and clock entry point on the boundary of the plane. We refer to
points by their indices. Let t(i, j) refer to the delay between points and ,
then the Clock Routing Problem(CRP) is to interconnect each such
that:

are both minimized.
Additional objective functions such as minimization of total wire length,

protection from noise and coupling may also be defined. The clock routing
problem has traditionally been studied to minimize skew.

It is important to see that CRP is not a steiner tree problem for global
routing of high performance circuits, since the interconnection distance between

11.1. Clock Routing 427

two clock terminals is of no significance in CRP. The clock routing problem is
critical in high performance circuits. In other circuits, the clock is simply
routed along with rest of the nets, and the router is given a maximum routing
length so that it may route any segment of the clock.

11.1.3.1 Design Style Specific Problems

The clock routing changes significantly in different design styles. The prob-
lem is well studied for full-custom and gate array design styles, but no special
model has been developed for standard cell designs.

1.

2.

3.

Full Custom: The clock routing problem in full custom style depends
on the availability of a routing layer for clocks. If a dedicated layer,
free of obstacles, is available for routing, the clock routing problem in
full custom design is exactly the same as CRP. If obstacles are present,
however, we refer to that problem as the Building Block Clock Routing
Problem(BBCRP).

Given the routing plane and a set of rectangles
lying within the plane and each rectangle has its clock terminal on
its boundary, and the clock entry point on the boundary of the plane.

Then the BBCRP is to interconnect each to so that wires do
not intersect with any rectangles and both skew and delay are minimized.

In microprocessors, a chip level fixed buffered clock distribution is used
to distribute the clock signals to different blocks. Then the problem
described above can be used to locally distribute the clock.

Standard Cell: The clock routing problem in standard cell designs is
somewhat easier than full-custom in some aspects, since clock lines have
to be routed in channels and feedthroughs. Conventional methods do not
work in standard cell design since clock terminals are neither uniformly
distributed (as in full-custom), nor are they symmetric in nature (as in
gate array).

Gate Array: Gate arrays are symmetrically arranged in a plane and
allow the clock to be routed in a symmetric manner as well. The al-
gorithms for clock routing in such symmetric structures have been well
studied and well analyzed.

11.1.4 Clock Routing Algorithms

The skew can be minimized by distributing the clock signal in such a way
that the interconnections carrying the clock signal to functional sub-blocks are
equal in length. A perfect synchronization between the clock signals can be
achieved by delaying the signals equally before they arrive at the sub-blocks.
Note that we do not discuss buffered clock routing algorithms. As stated above,
the problems and their corresponding algorithms should be viewed as local clock
routing algorithms. In microprocessors, these algorithms can be used at a block

428 Chapter 11. Clock and Power Routing

level. In ASICs, due to lower operating frequencies, these algorithms can also
be used for chip level clock. However, even in that case, some buffering has
to be used. In the following we will discuss, skew minimization algorithms.
Minimization of clock skew has been studied by a number of researchers in
recent years. In the following, we review several clock routing algorithms.

11.1.4.1 H-tree Based Algorithm

Consider a special case of CRP, where all the clock terminals are arranged
in a symmetric fashion, as is the case in gate arrays. The clock routing in such
cases can be accomplished with zero skew using the H-tree algorithm. Let us
explain the algorithm with the help of a small example shown in Figure 11.8(a).
Consider the case with four points, and

in a routing plane with l = 6,w = 6. The clock entry point is at
In the H-tree algorithm, is connected to and is connected

to by vertical segments. Let and be the two
middle points of these vertical segments. These middle points are also called
the tapping points. and are connected by a horizontal segment, whose
middle point is Finally, clock entry point is connected to

by a vertical segment. It can be seen that all points are exactly 7 units
from the point hence skew is zero. Since the longest rectilinear distance
between any two points(and) is seven units, this routing is minimum
delay routing as well. Thus, the routing shown in Figure 11.8(a) provides clock
signals to all clock points with zero skew and minimum delay.

This method can be easily generalized to points, where is a power of 4.
The basic 4 point H-structure is duplicated in a recursive fashion. An H-tree
with 16 terminals is shown in Figure 11.8(b). H-tree constructions have been
used extensively for clock routing in regular systolic arrays [FK82, DFW84].

11.1. Clock Routing 429

If the routing is not restricted to being rectilinear, an alternate tree struc-
ture with smaller delay may be used.This tree structure, called the X-Tree,
ensures that skew is zero (see Figure 11.9). However, X-trees are undesirable,
since they may cause cross talk due to close proximity of wires. H-tree clock
lines do not produce corners sharper than 90°, and no two clock lines in an
H-tree are ever in close proximity as a result cross talk is significantly less in
H-tree as compared to X-tree.

The H-tree algorithm is applicable for very special structures. In general,
clock terminals are randomly arranged all over the chip surface and require
much more general algorithms.

11.1.4.2 The MMM Algorithm

Jackson, Srinivasan and Kuh [JSK90] presented a clock routing algorithm
called Method of Means and Medians (MMM) for the CRP. The MMM Al-
gorithm follows a strategy very similar to the H-tree algorithm. The MMM
algorithm recursively partitions a circuit into two equal parts, and then con-
nects the center of the mass of the whole circuit to the centers of mass of the
two sub-circuits.

The algorithm is simple and yields good results. Let be the list of points
sorted according to their x-coordinate. Let be the median in Assign

points in list to the left of to Assign the remaining points to Due
to the geometric nature of the problem, we may consider the partition of the
point set as the partitioning of a region. Thus and partition the original
region by x-median into two sub-regions with an approximately equal number
of points in each sub-region. Similarly, and represent the division of
into two sets about the y-median.

The basic algorithm first splits into two sets (arbitrarily in the x or y

430 Chapter 11. Clock and Power Routing

direction.). Assume that a split of into and is selected. Then, the
algorithm routes from the center of the mass of P to each of the center of mass
of and respectively. The regions and are then recursively split
in the y direction (the direction opposite to the previous one). Thus, splits
between x and y are introduced on the set of points recursively until there is
only one point in each sub-region. An example of this algorithm is shown in
Figure 11.10.

Notice that basic algorithm discussed above ignores the blockages and pro-
duces a non-rectilinear tree. It is also possible that some wires may intersect
with each other. In the second phase, each wire in the tree can be converted
so that it only consists of rectilinear segments and avoids blockages and other
nets.

11.1.4.3 Geometric Matching based Algorithm

Another binary tree based routing scheme is presented by Kahng, Cong and
Robins [KCR93]. In this approach, clock routing is achieved by construct-
ing binary tree using recursive Geometric matching. We call this algorithm
Geometric Matching Algorithm(GMA). Unlike MMM algorithm which is a top
down algorithm, GMA works bottom up. Let us start by defining the geometric
matching.

Given a set of points, a geometric matching on is a set of line
segments whose endpoints are in with no two line segments sharing the
endpoint. Each line segment in the matching defines an edge. The cost of a
geometric matching is the sum of the lengths of its edges.

To construct a tree by recursive matching, a forest of isolated nodes is
considered, each of which is a tree with the clock entry point being the node
itself. The minimum-cost matching on these points yields segments, each
of which defines a subtree with two nodes. As pointed out earlier, the center
point of each segment will be called the tapping point and if the clock signal is
provided at the tapping point, then the signal will arrive at the two endpoints
of the segment with zero skew. The set of tapping points serves as the set
of points for the next iteration of the algorithm. In general, the matching
operation will pair up the clock entry points (i.e., roots) of all the trees in
the current forest. At each level, the algorithm chooses the root of the newly
merged tree to be the tapping point which minimizes the path length skew to
the leaves of the two subtrees. Figure 11.11 shows GMA algorithm running on
8-point set.

When subtrees and are merged into a higher level subtree the
optimal entry point may not be equidistant from the entry point of and
Intuitively, balancing requires sliding the tapping point along the “bar of the
H”. However, it might not always be possible to obtain perfectly balanced path
lengths in this manner. Therefore, H-flipping scheme is used: for each edge
H structure formed by the three edges of is replaced by the H structure

over the same four points which minimizes path length skew, and further
minimizes tree cost.

11.1 Clock Routing 431

432 Chapter 11. Clock and Power Routing

As shown in Figure 11.11(c), two subtrees and are obtained, how-
ever, it is not possible to connect tapping points of and Therefore,

is H-flipped to obtain Finally is merged with as shown in
Figure 11.11(d).

Since the algorithm is based on geometric matching, its time complexity
depends on the matching subroutine. The fastest known algorithms for general
matching are By taking advantage of planar geometry, the algorithmic
complexity can be reduced to

11.1.4.4 Weighted Center Algorithm

The geometric matching algorithm is not applicable to Building Block Lay-
out Problem (BBCRP) since it assumes that a complete layer is available for
routing. Sherwani and Wu presented a new clock routing algorithm [SW91]
called the Weighted Center Algorithm (WCA) for the BBCRP. In WCA, a
weighted Clock Distribution Graph (CDG) for the problem is created. The
vertices of CDG are the clock terminals, while the edges represent the steiner
paths which may be used to connect two terminals. The weights of all the
edges are obtained by the RC time delay calculation. The CDG is a complete
graph, as it is always possible to connect two points in a BBCRP problem. The
weight of the edge is computed using a shortest path algorithm to find
the path followed by delay calculation for that path.

The WCA is greedy in nature and the basic idea of the algorithm is as
follows: Using the clock distribution graph, the algorithm first finds the edge

11.1. Clock Routing 433

 with the minimum weight (minimum delay), replace and with another
vertex which lies on their weighted center (tapping point). The CDG is
updated to reflect new edge costs. Using this new CDG, the algorithm repeats
this process recursively, until all the clock terminals are joined into one global
weighted center. This global weighted center is designated as the clock signal
entry point. Building up the clock distribution in this way, the clock skew
between different clock terminals can be held to minimum. As the clock tree
is built by using smallest edges first (just like the spanning tree algorithm),
therefore the total clock tree wire length is minimized as compared to other
clock distribution schemes. An example of clock routing by WCA is shown
in Figure 11.12. WCA algorithm can be easily extended to multiple layers by
including delays in via in calculation of path delays.

11.1.4.5 Exact Zero Skew Algorithm

Tsay [Tsa91] presented an algorithm for creating a clock tree with exact zero
skew. The algorithm assumes that pairing of points has been done, and con-
cerns itself with finding the tapping point very accurately, based on capacitive
loading of the clock terminals as well as the delay in the sub-trees.

The zero skew algorithm is a recursive and bottom-up in nature. Assume
two sub-trees and as shown in Figure 11.13. This algorithm computes a
tapping point as discussed below.

In order to balance skew in both sub-trees, using Eq. (11.2), we have:

root of is equal to (see Figure 11.13). Similarly, the wire length from
tapping point to root of is given by Let be resistance per
unit length and be the capacitance per unit length of wire. Then,

and Solving equation 11.3 with these
parameters we get

If 0 then tapping point is on the line segment joining two trees. On
the other hand, if or if then tapping point is not on the line segment
and wire elongation is needed. This is done by snaking a short segment of wire
which in essence allows the tapping point to fall on the wire. The actual length
of the snake can be easily determined in the following manner: Let us assume
that and let length of the elongated wire is . Then its resistance is
and its capacitance is In order to balance the skew

where refers to the delay between node and one of the leaves. Note that
the delay would be the same for all leaves. Assuming that the total wire length
between two trees is , then the length of wire from the tapping point to the

434 Chapter 11. Clock and Power Routing

11.1. Clock Routing 435

and therefore is given by

Similarly, we can determine if If is too long then additional
buffer or capacitive terminators must be used to balance the skew.

We explain the algorithm with the help of eight pin example shown in
Figure 11.14. The capacitive loading of each pin is shown in the figure. The
capacitances shown are measured in farads (F) for the ease of calculation.
However, the practical values of capacitances are usually in fifo farads
According to the algorithm, first the tapping point is calculated for and

The calculated location of is (3,21.52), which balances the delay of
the path between and at 1.96 ns. The capacitance of is the sum
of the capacitance at and the capacitance of the wire joining and

i.e., C=8+3+(0.2x 8)=12.6 F. The tapping point for pairs and
is calculated in the same manner. is calculated at (7,15) and its load

capacitance is calculated to be 26.8 F. The delay from tapping point to both
pins and is same, i.e., 3.99 ns. Similarly, tapping points for and

are calculated to be at (25,31) and (30,26) with load capacitances of 5 F
and 30 F, respectively. At this point, we have four subtrees rooted at

and such that and are in one pair and and in another.
Following the same algorithm, we calculate the locations of tapping point
at (7,17.97) with 41.50 F load capacitance. While calculating tapping point for

case is calculated to be 18.28. Therefore, 8.28 is the actual elongation
(as shown in Figure 11.14). In this case the tapping point coincides with

and we find that The wire connecting and
therefore, needs to be elongated. The length of elongation (snaking) for the

The last step is to connect and to get final tapping point, which is
calculated to be at (22.16,17.97). The final solution is shown in Figure 11.14.
Note that the practical values of and are and 0.02 respectively.
The chip width and height units are both in

As discussed above, this algorithm assumes pairing of points and only com-
putes tapping points to construct the clock tree. Pairing of points can be done
by using MMM or GMA if the entire layer is available. If obstacles are present,
then WCA may be used to find point pairs.

11.1.4.6 DME Algorithm

Three independent groups [(Boese and Kahng), (Chao, Hsu and Ho), (Edahiro)]
independently proposed the Deferred Merge Embedding (DME) method in
[BK92, CHH92, Eda91]. DME is a linear - time algorithm which optimally
embeds any given topology in the Manhattan plane, i.e. with exact zero skew
and minimum total wire length. A generic DME is a two phase; bottom up and

436 Chapter 11. Clock and Power Routing

11.1. Clock Routing 437

top down process. The bottom up phase constructs a tree of merging segments
which represent the loci of possible placements of nodes in the tree. The top
down embedding phase determines the exact locations for internal nodes.

Before defining the DME formally, let us review definitions of terms com-
monly used in this section. A manhattan arc is defined to be a line segment,
possibly of zero length, with slope +1 or -1; in other words a Manhattan arc
is a line segment tilted at 45 deg. from the wiring directions. The collection
of points within a fixed distance of manhattan arc is called a tilted rectan-
gular region or TRR whose boundary is composed of manhattan arcs, (see
Figure 11.15(a)). The manhattan arc at the center of the TRR is called its
core. The radius of a TRR is the distance between its core and its boundary.
Note that a manhattan arc is itself a TRR with radius 0. A merging segment
at an internal node is a set of all placements which merge the TRRs of the
child nodes with minimum wire cost.

A formal recursive definition of the merging segment of node
is as follows. If is a sink then (note that this single point is a
manhattan arc). If v is an internal node, then is a set of all placements

which merge and with minimum wire cost, that is, all points
within distance of and within distance of If
and are both manhattan arcs, then is obtained by

core and radius (See Figure 11.15(b)) If and are
both Manhattan arcs, then is also a Manhattan arc [BK92]. Since the
merging segment for each sink is a single point and this a manhattan
arc, by induction all merging segments are Manhattan arcs.

In the bottom up phase, each node is associated with a merging
segment which represents a set of possible placements of v in a minimum-cost
ZST. The merging segment of a node depends on the merging segments of its
two children, hence the bottom-up processing order. More precisely, let and
 be the children of node in G, and let and denote the subtrees

intersecting two TRRs, with core and radius and with

of merging segments rooted at and respectively. We seek placements of
v which allow and to be merged with minimum added wire while
preserving zero skew. This means that we want to minimize + in T,
while balancing delays from l(v) to all leaves in the subtree rooted at . The
values of and which achieve this property are unique. They are
computed and stored for use in the top-down embedding phase of DME. The
details of the bottom up phase are given in 11.16.

Given the tree of merging segments corresponding to G, the top-down phase
chooses exact embeddings of internal nodes in the ZST. For node in topology
G, (i) if is the root node, then DME selects any point in to be or if
v is an internal node other than the root, DME chooses to be any point in

 that is at distance or less from the placement of v’s parent p (the
merging segment was constructed such that
so there must exist some satisfying this condition). In case (ii), can

radius and core The details of the top down phase are given in
11.17.

DME requires an input topology, as a result, several authors have proposed
topology constructions that yield low-cost routing solutions when DME is ap-
plied.

be any point in the intersection of and the square TRR which has

438 Chapter 11. Clock and Power Routing

11.1. Clock Routing 439

11.1.5 Skew and Delay Reduction by Pin Assignment

In [WS91], clock routing is done at pin assignment phase of the layout. If
clock routing is considered at the floorplanning stage of the layout, then some
flexibility in location of the clock terminals is allowed. During layout several
iterative steps in placement and routing phases are allowed. During these re-
design cycles, circuit layout is iteratively improved and design is made ‘more’
rigid. This allows successive re-positioning of clock terminals of functional
block. By appropriately locating the clock terminals total clock skew and de-
lay can be reduced significantly. Movable Clock Terminal Routing Problem
(MCTRP) is a clock routing problem in which the clock terminals of the func-
tional blocks in floorplan can be moved along the block boundaries.

MCTRP basically consists of two subproblems. The first subproblem is to
find the best location for clock terminal of each functional element to minimize
the clock delay. The second subproblem is to find a clock routing such that
the clock signals can reach all the terminals with equal time delay. The first
subproblem is shown to be NP-complete [WS91], and a greedy heuristic algo-
rithm is presented. The second subproblem of interconnecting points to obtain
a minimum skew can be solved by using any algorithm discussed earlier for
BBCRP.

11.1.6 Multiple Clock Routing

Large VLSI systems may use multiple clocks because the existence of multiple
clock phases gives an extra degree of freedom to the timing characteristics of
the synchronizing circuits. The multiple clock routing problem is, however,
more complex because of two types of skew: the intra clock skew within a clock

and the inter clock skew among multiple clocks. Thus, for high performance
circuits, it is necessary to develop a routing algorithm for multiple clocks which
minimizes the delay as well as both types of skews. An additional problem of
routing two phase clock on a single layer is crossing of two clock signals. This
problem is resolved by the use of ‘low resistance’ crossunders.

Let us consider a system with clocks Let us also assume
that there are blocks each requiring one clock input from each clock. Let
be the set of clock terminals. Let denote the terminal of clock
at block Let be the arrival time of clock signal at For any clock
intra clock skew is defined as,

For a block the inter-clock skew is defined as,

For the system, the cross skew is defined as,

Thus the objective of multiple clock routing system is not only to minimize
for each clock but also to minimize between each set of clocks and

the cross skew, of multiple clock system. However, this task is complicated due
to intersection between different clock trees. When two clock trees intersect,
crossunder may be used to pass one signal under the other signal. Crossunders
should be minimized, subject to the constraint that the number of crossunders
should be equalized for multiple clocks, in order to equalize the signal delays.

In [KHS92], Khan, Hossain, and Sherwani proposed zero skew routing for
two clocks. The basic idea is to build the two trees independently. In the first
phase points are paired up and crossunders are assigned to allow two trees to
be routed in a planar fashion. This phase attempts to minimize the cross-skew
by alternating the order in which the crossunders are used. In this way the
number of crossunders are balanced on each path of both trees. In the second
phase, algorithm eliminates intra clock skew in both trees independently, taking
crossunders into account.

11.2 Power and Ground Routing

In VLSI design, almost all the blocks need power supply and need to be
connected to ground as well. The power and ground nets are usually laid out
entirely on the metal layer(s) of the chip due to smaller resistivity of metal as
compared to poly. Since, contacts(vias) also significantly add to the parasitics,
it is also advisable to utilize a planar single-layer implementation of these nets.
It should be noted that the area requirements for power and ground nets depend
on the voltage drop, current density and other constraints. In case of normal
signal nets, the current they carry is very small. Hence, they can be routed

440 Chapter 11. Clock and Power Routing

11.2. Power and Ground Routing 441

with minimum-width wires. Thus minimizing the total wire length also ensures
minimizing the area needed to route them. The same is not true for power and
ground nets.

Routing of power(VDD) and ground(GND) nets consists of two main tasks:
(i) construction of interconnection topology, and (ii) determination of the widths
of the various segments of topologies. In recent years, most of the research and
development efforts have been focused on the topological routing of the power
and ground signals.

For a given placement of arbitrary rectangular blocks on a chip, the problem
of routing power and ground nets is to find two non-intersecting interconnec-
tion trees, each for VDD and GND. The width of trees at any point must be
proportional to the amount of current being drawn by the points in that sub-
tree. We assume that each block has an entry point for VDD and GND. In
standard cell designs VDD and GND are routed by using inter-weaved combs
(as discussed in chapter 1). In fact, VDD and GND are already laid out in the
cells and simply connected on one side with GND and VDD on the other. In
gate arrays, VDD and GND routing is similar to standard cell and is usually
laid out on the master, and not subject to customization.

A simple scheme that is often used for power and ground using two layers
of metal is a grid structure. Several rows of horizontal (M5) wires for both
power and ground run parallel to each other. The vertical wires run in M4 and
connect the horizontal wires. In this way, two grids are formed. All the blocks
simply connect to the nearest power and ground wire. This scheme is shown
in Figure 11.18. The blocks and connections to blocks are not shown for sake
of clarity.

Syed and El Gamal [SG82] proved the necessary and sufficient conditions
for a planar routing of power/ground nets using single pads. Two nets can be
routed on a single layer without crossover only if there exists a cut for each
block in the chip that separates the terminals of one net from the terminals
of the other net. The nets are grown as interdigitated trees. Applying simple
traffic rules to the free channels between modules prevent the two trees from
crossing. An example routing is shown in Figure 11.19.

Another approach is proposed by Moulton [Mou83]. The basic idea of the
proposed algorithm is to partition the chip surface into a VDD region and
a GND region and then to route each net within the appropriate region. It
is easy to see that if all modules are visited once while keeping the VDD to
one side and the GND on the another side, a cycle can be drawn which will
connect all modules to the VDD and GND pads. Thus a Hamiltonian cycle
is drawn, and the algorithm allows this cycle to determine the layout of the
trees. Tree traversal determines how much current might flow through each
wire of the tree. The maximum current of a wire ending in a terminal is the
maximum current of the terminal. The maximum current of other wires is the
sum of its children’s maximum currents. After every wires maximum current
is known, multiplying it by a design-rule constant gives every wires minimum
width. Both the Hamiltonian cycle and Steiner tree operations are, however,
computationally very expensive.

The algorithm proposed by Rothermel and Mlynski [RM81] tends to route
nets interdigitated. It extends one net from the left edge of the chip, and the
other from the right. This routing order of the connecting points is deter-
mined by the horizontal distances of connecting points from the edge of the
chip. Calculation of nets is accomplished by a combined Lee and Line Search
algorithm. At first only points of the left net which lie in the left half of the
chip are routed. Then those points of the right net which lie in the right half
of the chip are routed. This process uses a fast line search algorithm similar
to Hightower’s algorithm [Hig80]. Next, all other points of the two sets are
routed by Lee’s algorithm [Rub74], which takes into account obstacles created
by already routed net segments.

In [HF87], Haruyama and Fussell propose a method for routing non-crossing
VDD and GND trees on a layer which tries to minimize the chip area devoted to
power routing under metal migration and voltage drop constraints. The metal
migration has to be prevented by using a wide enough metal wire. In addition,
the voltage drop has to be kept small, because a large voltage drop between a
pad and a module decreases switching speed and noise margin. The algorithm

442 Chapter 11. Clock and Power Routing

11.2. Power and Ground Routing 443

also takes the width of channels into consideration so that if a channel is too
congested to allow a wire to pass through it, the wire avoids the congested
channel and chooses other channels. The goal is to grow the VDD and the
GND trees by connecting modules, one by one, to trees under construction.
Modules are sorted by their power consumption. First, the pins of the most
power-consuming module are connected to the pads. Subsequent modules are
routed in decreasing order of power consumption. This is a greedy approach
based on the notion that it is better for more power-consuming modules to
have shorter paths, since more power-consuming modules need wider wires in
order to be supplied with more current. At earlier stages in the routing, paths
can generally be shorter, since they are blocked by fewer wires already routed.
A smaller area is thus occupied by a wire. Pins of the second module (and later
considered modules) are connected to non-root vertices of the net (or possibly
to an unconnected pad when there is more than one VDD or GND pad). The
constructed net is a tree whose leaves are pins of modules and whose root is
a pad. When there is more than one VDD or GND pad, the algorithm may
create a forest of multiple trees. The wire area becomes even smaller than when
there is only one VDD pad and one GND pad because the search can find a
shorter path to a power source. This multiple pad method eases the current
load of each pad.

Routing of power and ground nets is often given first priority, because the
power and ground wires are usually laid out entirely on a metal layer(s) due to
its low resistivity, as described above. Signal nets may share the metal layer (s)

with power and ground, but they change layers whenever a power or ground
wire is encountered.

11.3 Summary

Clock routing is one of the factors which determines the throughput of any
chip. In advanced VLSI systems, clock skew caused by interconnection delay,
if not controlled, can lead to significant performance degradation. Ideally, the
clock skew should be less than 5-10 percent of the clock period. Several clock
routing algorithms have been proposed, and it is possible to route a clock very
accurately with exactly zero skew if a complete layer is available. Much research
remains to be done for clock routing problems with obstacles on the routing
layer. Multiple clock routing is another area that promises to be a focus of
attention as more and more designs use multiple clocks. Some radical design
methodologies have been presented (asynchronous self timed systems), which
do away with system level clock. Instead, the flow of information from unit
to unit is based on hand shaking protocols and time stamping of the data.
However, this approach presents considerable design difficulties. Clock signal
serves as a convenient sequence and timing reference and it would be difficult
to design circuits with such sequencing.

Power and ground routing needs special attention because of wire widths.
Power and ground wires carry large amounts of current and as a result wider
wires are used. The width cannot be uniform since current requirement is not
uniform over the chip surface. As a result, wires must be carefully sized to
allow proper current flow. Too thin wires lead to low currents, while too wide
wires may lead to wastage of area.

Currently, Aluminum (Al) is the metal of choice for long interconnect lines,
such as clock, power and ground lines. Al has low resistivity, good adherence to
silicon and silicon oxide, it is easy to bond, pattern and deposit. Furthermore,
Al is low-cost, readily available and easy to purify. Despite these qualities,
Al suffers from a variety of problems, such as, electro-migration and contact
failures. Au, Cu and Ag all have resistivities lower than that of Al. However,
replacing Al with any of them will require a major effort because none of them
are as compatible with integrated circuit processing as Al.

In future, superconductivity and optical interconnect offer alternative to
aluminum wires for clock routing. In particular, optical interconnect allows
fast (speed of light), reliable (no metal migration problems), noise-free and easy
clock distribution. It is possible to distribute a light signal to all the functional
units with zero skew and no delay. However, both superconductor and optical
interconnect are still topics of research and are currently not practical.

11.4 Exercises

1. Generate an instance of CRP by randomly placing points on a plane.
Choose (randomly) one point on the boundary of the plane as the clock

444 Chapter 11. Clock and Power Routing

11.4. Exercises 445

2.

3.

† 4.

5.

6.

entry point. Implement MMM algorithm and test it on the instance
generated.

Implement Geometric Matching algorithm for point set developed in ex-
ercise above. Compare the results with that of MMM Algorithm, in terms
of skew and total wire length.

Generate an instance of BBCRP by randomly placing rectangles on
a plane such that none of the rectangles intersect. Randomly choose
a point on the boundary of each rectangle as its clock terminal. Also
choose (randomly) one point on the boundary of the plane as a clock
entry point. Implement Weighted center algorithm and test it on the
generated problem. Compare the total wire length results for weighted
center algorithm and geometric algorithm.

It is possible to combine geometric matching and weighted center algo-
rithms. The basic idea is to use the clock distribution graph to identify
the paths, and use geometric matching to pair up the points. Modify the
weighted center algorithm to use geometric matching.

Consider the 8 point instance given in Figure 11.20. Find the routing
with exact zero skew. Assume and

For an instance of CRP, randomly assign load capacitances of each point
between 1 F and 20 F. Assume and Implement the

7.

8.

9.

Exact zero skew algorithm and test it on instance generated above. Use
GMA for point pairing.

For a given instance, compute the number of times snaking is required in
Exact zero skew algorithm if MMM algorithm is used for pairing up the
points instead of GMA.

Consider the following instance of MCTRP given in Figure 11.21. Find
clock entry point for each block such that minimum skew algorithm can
route the clock net with minimum wire length. The clock entry point of
chip can be placed anywhere on the boundary.

Consider the points given in Figure 11.22. Find the optimal clock entry
point for this chip.

† 10.

† 1 1 .

Develop an algorithm which finds the optimal clock entry point of the chip
for any instance of BBCRP. Can this problem be solved in polynomial
time ?

We define the following restricted Standard Cell Clock Routing Prob-
lem(SCCRP): Given a grid representing a channel and L clock
terminals on top and bottom, and clock entry point on the right side of
the channel(Figure 11.23). Find a routing with minimum delay and zero
skew. More precisely, the points are located on (0,0), (2,0), . . . ,
 and the clock entry point is located at

446 Chapter 11. Clock and Power Routing

11.4. Exercises 447

† 12.

† 13.

† 14.

Given only one layer for clock routing, prove that there exists a routing
for SCCRP with zero skew if tracks are allowed in the
channel. Prove that the maximum delay in such routing is no more than

Given two layers, prove that there exists a routing for SCCRP with zero
skew if tracks are allowed in the channel. Assume that
vias are ideal, i.e., they do not cause any additional delay.

Given two layers, develop a routing for SCCRP so that the path length
and the number of vias is equal from clock entry point to each terminal.

Bibliographic Notes:
Bakoglu [Bak90] presents an excellent coverage of parameters involved in in-
terconnect. Details of delay computation may also be found there. Another
algorithm for the clock routing problem of building block design has been pre-
sented by Ramanathan and Shin [RS89]. The problem of power and ground
routing has been extensively studied and several related problems have also

been investigated. In [HSVW90a], Ho, Sarrafzadeh, Vijayan and Wong discuss
the problem of minimizing the number of power pads, in order to guarantee
the existence of a planar routing of multiple power nets. They also show that
the general pad minimization problem is NP-complete. They derive a gen-
eral lower bound and present a heuristic for the general problem. They also
present optimal algorithms for some special cases. In [LG87], Lursinsap and
Gajski, consider the problem of power routing in a top-down design approach.
In this approach, a layout is decomposed into cells connected by abutment.
The active cells contain transistors and interconnections, while passive cells
are routing cells. They consider power routing of all active cells so that the
total wire length is minimized, and present an optimal power routing algorithm
for this special problem. In [XK86], Xiong and Kuh present an algorithm which
grows both the VDD (from one side) and the GND trees (from the other side)
simultaneously using a plane sweep algorithm. In [Eda94], Edahiro presents a
bucket algorithm for zero skew routing with linear time complexity on the aver-
age. In [CS93], Cho and Sarrafzadeh introduce a new approach for optimizing
clock tree. In [EL96], a clock buffer placement algorithm is proposed.

448 Chapter 11. Clock and Power Routing

