
Chapter 8

Global Routing

In the placement phase, the exact locations of circuit blocks and pins are
determined. A netlist is also generated which specifies the required inter-
connections. Space not occupied by the blocks can be viewed as a collection of
regions. These regions are used for routing and are called as routing regions.
The process of finding the geometric layouts of all the nets is called routing.
Nets must be routed within the routing regions. In addition, nets must not
short-circuit, that is, nets must not intersect each other.

The input to the general routing problem is:

1.

2.

3.

4.

Netlist,

Timing budget for nets, typically for critical nets only,

Placement information including location of blocks, locations of pins on
the block boundary as well as on top due to ATM model (sea-of-pins
model), location of I/O pins on the chip boundary as well as on top due
to C4 solder bumps,

RC delay per unit length on each metal layer, as well as RC delay for
each type of via.

The objective of the routing problem is dependent on the nature of the chip.
For general purpose chips, it is sufficient to minimize the total wire length, while
completing all the connections. For high performance chips, it is important to
route each net such that it meets its timing budget. Usually routing involves
special treatment of such nets as clock nets, power and ground nets. In fact,
these nets are routed separately by special routers.

A VLSI chip may contain several million transistors. As a result, tens of
thousands of nets have to be routed to complete the layout. In addition, there
may be several hundreds of possible routes for each net. This makes the routing
problem computationally hard.

One approach to the general routing problem is called Area Routing, which
is a single phase routing technique. This technique routes one net at a time

248 Chapter 8. Global Routing

considering all the routing regions. However, this technique is computationally
infeasible for an entire VLSI chip and is typically used for specialized problems,
and smaller routing regions.

The traditional approach to routing, however, divides the routing into two
phases. The first phase is called global routing and generates a ‘loose’ route
for each net. In fact it assigns a list of routing regions to each net without
specifying the actual geometric layout of wires (see Figure 8.2(a)). The second
phase, which is called detailed routing, finds the actual geometric layout of
each net within the assigned routing regions (see Figure 8.2(b)). Unlike global
routing, which considers the entire layout, a detailed router considers just one
region at a time. The exact layout is produced for each wire segment assigned
to a region, and vias are inserted to complete the layout. In fact, even when
the routing problem is restricted to a routing region, such as channels (see
definition below), it cannot be solved in polynomial time, i.e., the channel

249

routing problem is NP-complete [Szy85].
In this book, we will briefly describe area routing techniques. Basically, we

will follow the two phase approach to routing. In the following, we will discuss
global and detailed routing in more detail. Figure8.3 shows a typical two phase
routing approach.

The global routing consists of three distinct phases; Region definition, Re-
gion Assignment, and Pin assignment. The first phase of global routing is to
partition the entire routing space into routing regions. This includes spaces
between blocks and above blocks, that is, OTC areas. Between blocks there
are two types of routing regions: channels and 2D-switchboxes. Above blocks,
the entire routing space is available, however, we partition it into smaller re-
gions called 3D-switchboxes. Each routing region has a capacity, which is the
maximum number of nets that can pass through that region. The capacity of
a region is a function of the design rules and dimensions of the routing regions
and wires. A channel is a rectangular area bounded by two opposite sides by the
blocks. Capacity of a channel is a function of the number of layers (l), height ()
of the channel, wire and wire , i.e.,
For example, if for channel C shown in Figure 8.1, l = 2,

then the capacity is In a five layer process, only M1, M2 and
M3 are used for channel routing. Note that channel may also have pins in th
middle. The pins in the middle are actually used to make connections to nets
routed in 3D-switchboxes. A 2D-switchbox is a rectangular area bounded on
all sides by blocks. It has pins on all four sides as well as pins in the middle.
The pins in the middle are actually used to make connections to nets routed
in 3D-switchboxes. A 3D-switchbox is a rectangular area with pins on all six
sides. The pins on the bottom are the pins which allow for connections to nets
in channels, 2D-switchboxes and nets using ATM (sea-of-pins) on top of blocks.
The pins on the top may be required to connect to C4 solder bumps.

Consider the five metal layer process and assume that blocks use upto third
metal layer for internal routing. In this case, channel and 2D-switchboxes will
be used in Ml, M2 and M3 to route regions between the blocks. Furthermore,
the M4 and M5 routing space will be partitioned into several smaller routing
regions. The three different routing regions are shown in Figure ref3dswitchbox-
6. Another approach to region definition is to partition the M4 and M5 along
block boundaries. In this case, channels and 2D-switchboxes will be routed in
five metal layers. In addition the regions on top of blocks will be 3D-switchboxes
and need to be routed in M4 and M5.

The second phase of global routing can be called region assignment. The
purpose of this phase to identify the sequence of regions through which a net
will be routed. This phase must take into account the timing budget of each
net and routing congestion of each routing region. After the region assignment,
each net is assigned a pin on region boundaries. This phase of global routing
is called pin assignment. The region boundaries can be between two channels,
channel and 3D-switchbox, 2D-switchbox and a 3D-switchbox among others.
The pin assignment phase allows the regions to be somewhat independent.

After global routing is complete, the output is pin locations for each net on

250 Chapter 8. Global Routing

251

the all the region boundaries it crosses. Using this information, we can extract
the length of the net and estimate its delay. If some net fails to meet its timing
budget, it needs to be ripped-up or global routing phase needs to be repeated.

Detailed routing includes channel routing, 2D-switchbox and 3D-switchbox
routing. Typically channels and 2D-switchboxes should be routed first, since
channels may expand. After channels and 2D-switchboxes have been routed,
the pin locations for 3D-switchboxes are fixed and then their routing can be
completed. Channels are routed in a specific order to minimize the impact of
channel expansion on the floorplan.

After detailed routing is completed, exact wire geometry can be extracted
and used to compute RC delays. The delay model not only considers the
geometry (length, width, layer assignments and vias) of a net, but also the
relationship of this net with other nets. If some nets fail to meet their timing
constraints, they need to be ripped-up or detailed routing of the specific routing
region needs to be repeated.

In this chapter, we discuss techniques for global routing. We will also discuss
some techniques that can be used for area routing. In Chapter 7 we will discuss
the detailed routing techniques. Chapter 8 is dedicated to routing techniques
on top of blocks. Chapter 9 discusses the routing of special nets, such as clock
and power nets.

Global routing has to deal with two types of nets. Critical nets, which
must be routed in high performance layers and other nets. Fir very critical

252 Chapter 8. Global Routing

nets, global router must use a path which takes the nets from its channel (or
2D-switchbox) through 3D-switchboxes to the termination point in a channel
or a 2D-switchbox or C4 bump. Other nets which may not need use of M4
and M5 can be routed through a sequence of channels. Global router must not
allocate more nets to a routing region than the region capacity. Let us illustrate
this concept of global routing by an example. Suppose that each channel in
Figure 8.5 has unit capacity. We consider routing of two nets
and There are several possible routes for net Two such
routes and are shown in Figure 8.6. If the objective is to route just

obviously is a better choice. However, if both and are to be
routed, it is not possible to use for since it would make unroutable.
Thus global routing is computationally hard since it involves trade-offs between
routability of all nets and minimization of the objective function. In fact, we
will see that global routing of even a single multi-terminal net is NP-complete.
In order to simplify presentation, in the rest of the chapter, we will consider
global routing with channels and 2D-switchboxes. We will note exceptions for
3D-switchboxes, as and when appropriate. In addition, we will assume that
timing constraints are translated into length constraints, hence the objective is
to route each net within its length budget.

8.1. Problem Formulation 253

8.1 Problem Formulation

The global routing problem is typically studied as a graph problem. The
routing regions and their relationships and capacities are modeled as graphs.
However, the design style strongly effects the graph models used and as a result,
there are several graph models. Before presenting the problem formulation of
global routing, we discuss three different graph models which are commonly
used.

The graph models for area routing capture the complete layout information
and are used for finding exact route for each net. On the other hand, graph
models for global routing capture the adjacencies and routing capacities of
routing regions. We discuss three graph models viz; grid graph model, checker
board model and the channel intersection graph model. Grid graphs are most
suitable for area routing while the channel intersection graphs are most suitable
for global routing.

1. Grid Graph Model: The simplest model for routing is a grid graph.
The grid graph is a representation of a layout. In this
model, a layout is considered to be a collection of unit side square cells
arranged in a h × w array. Each cell is represented by a vertex
and there is an edge between two vertices and if cells and
are adjacent. A terminal in cell is assigned to the corresponding ver-
tex The capacity and length of each edge is set equal to one, i.e.,
c(e) = 1, l(e) = 1. It is quite natural to represent blocked cells by setting
the capacity of the edges incident on the corresponding vertex to zero.
Figure 8.7(b) shows a grid graph model for a layout in Figure 8.7(a).

Given a grid graph, and a two terminal net, the routing problem is simply
to find a path connecting the vertices, corresponding to the terminals, in
the grid graph. Whereas, for a multi-terminal net, the problem is to find
a Steiner tree in the grid graph.

The more general routing problems may consider k-dimensional grid
graphs, however, the general techniques for routing essentially remain

254 Chapter 8. Global Routing

2.

3.

the same in all grids. In fact, routing in grids, should be considered as
area routing, since the actual detailed route of the net is determined.

Checker Board Model: Checker board model is a more general model
than the grid model. It approximates the entire layout area as a ‘coarse
grid’ and all terminals located inside a coarse grid cell are assigned that
cell number. The checker board graph is constructed in a
manner analogous to grid graph. The edge capacities are computed based
on the actual area available for routing on the cell boundary. Figure 8.8(b)
shows a checker board graph model of a layout in Figure 8.8(a). Note that
the partially blocked edges have unit capacity, whereas, the unblocked
edges have a capacity of 2. Given the cell numbers of all terminals of a
net, the global routing routing problem is to find a routing in the coarse
grid graph.

A checker board graph can also be formed from a cut tree of floorplan.
A block in a floorplan is represented by a vertex and there is an
edge between vertices and if the corresponding blocks and are
adjacent to each other. Note that, unlike the cells in a grid, two adjacent
modules in a cut tree of a floorplan may not entirely share a boundary
with each other. Figure 8.9(b) shows an example of a checker board graph
for a cut tree of a floorplan in Figure 8.9(a).

Channel Intersection Graph Model: The most general and accurate
model for global routing is the channel intersection model. Given a layout,
we can define a channel intersection graph where each
vertex represents a channel intersection Two vertices and

are adjacent in if there exists a channel between and In
other words, the channels appear as edges in Figure 8.10(b) shows
a channel intersection graph for a layout in Figure 8.10(a). Let c(e) and
l(e) be the capacity and length of a channel associated with edge
The channel intersection graph should be extended to include the pins
as vertices so that the connections between the pins can be considered
in this graph. For example, the extended channel intersection graph in

8.1. Problem Formulation 255

Figure 8.11(b) is obtained by adding vertices representing terminals to
the channel intersection graph in Figure 8.10(b).

In the rest of the chapter, the type of routing graph will be clear from
the context and will be denoted as G = (V, E).

The global routing problem of two terminal nets is to find path for each net
in the routing graph such that the desired objective function is optimized. In
addition, the number of nets using each edge (traffic through the corresponding
channel) should not violate the capacity of that edge. For example, the global
routes for nets and are shown as the paths and in Figure 8.11 (b).
It is obvious from the example that routing of one net at a time causes ordering
problem for nets. It is important to note that the overall optimal solution may
consist of suboptimal solutions of individual nets.

For a net with more than two terminals, the path model discussed above
is not appropriate. In fact, global routing of multi-terminal nets can be for-
mulated as a Steiner tree problem. As defined in Chapter 3, a Steiner tree is
a tree interconnecting a set of specified points called demand points and some
other points called Steiner points. The number of Steiner points is arbitrary.
The global routing problem can be viewed as a problem of finding a Steiner
tree for each net in the routing graph such that the desired objective function
is optimized. In addition, the capacity of the edges must not be violated. As
discussed earlier, a typical objective function is to minimize the total length of
selected Steiner trees. In high-performance circuits, the objective function is
to minimize the maximum wire length of selected Steiner trees. A more precise
objective function for high-performance circuits is to minimize the maximum
diameter of selected Steiner trees. The diameter of a Steiner tree is defined as
the maximum length of a path between any two vertices in the Steiner tree. If
there is no feasible solution to an instance of a global routing problem, then
the netlist is not routable as the capacity constraints of some edges can not be
satisfied. In such cases, the placement phase has to be carried out again.

The formal statement of global routing problem is as follows: Given, a net-
list the routing graph G = (V, E), find a Steiner tree

256 Chapter 8. Global Routing

8.1. Problem Formulation 257

for each net such that, the capacity constraints are not violated,
i.e., for all where is the number of
wires that pass through the channel corresponding to edge if is
in it is 0 otherwise). A typical objective function is to minimize the total
wire length where is the length of Steiner tree

In the case of high-performance chips the objective function is to minimize
the maximum wire length Note that minimization of maximum
wire length may not directly reduce the diameter of the Steiner trees. Consider
the example shown in Figure 8.12. The two Steiner trees are both of length 30,
but the Steiner tree shown in Figure 8.12(b) has diameter equal to 20, which
is much smaller that the diameter of the tree shown in Figure 8.12(a).

8.1.1 Design Style Specific Global Routing Problems

The objective of global routing in each design style is different. We will
discuss the global routing problem for full custom, standard cell and gate array.
Global routing problem for FPGA and MCM is discussed in Chapters 11 and
12 respectively.

1.

2.

Full custom: The global routing problem formulation for full custom
design style is similar to the general formulation described above. The
only difference is how capacity constraints guide the global routing solu-
tion. In the general formulation the edge capacities cannot be violated.
In full custom, since channels can be expanded, some violation of capac-
ity constraints is allowed. However, major violation of capacities which
leads to significant changes in placement are not allowed. In such case,
it may be necessary to carry out the placement again.

Standard cell: In the standard cell design style, at the end of the place-
ment phase, the location of each cell in a row is fixed. In addition, the
capacity and location of each feedthrough is fixed. However, the chan-
nel heights are not fixed. They can be changed by varying the distance
between adjacent cell rows to accommodate wires assigned by a global
router. As a result, they do not have a predetermined capacity. On the
other hand, feedthroughs have predetermined capacity. The area of a

258 Chapter 8. Global Routing

standard cell layout is determined by the total cell row height and the
total channel height, where the total cell row height is the summation
of all cell row heights and the total channel height is the summation of
all channel heights. As the total cell row height is fixed, the layout area
could only be minimized by minimizing the total channel height. As a
result, standard cell global routers attempt to minimize the total chan-
nel height. Other optimization functions include the minimization of the
total wire length and the minimization of the maximum wire length.

The edge set of G = (V, E) are partitioned into two disjoint sets
and i.e., Edges in represent feedthroughs, whereas,
edges in represent channels. Capacity of each edge is equal to
the number of wires that can pass through the corresponding feedthrough.
Whereas, the capacity of an edge is set to infinity. Let
represent a edge in channel and let for all =

where p is the total number of channels in the layout.

Thus, the global routing problem is to find a Steiner tree for each net
such that, the capacity constraints are not violated, i.e.,

for all where is the number of
wires that go through the feedthrough corresponding to edge
if is in it is 0 otherwise). The optimization function is either to
minimize the total wire length or to minimize the maxi-
mum wire length or to minimize the total channel height

is the length of Steiner tree

If there is no feasible solution for a global routing problem, feedthrough
capacities are not sufficient, (see Figure 8.13.) Additional feedthroughs
should be inserted in order to allow global routing.

Recently, a new approach, called over-the-cell routing, has been presented
for standard cell design, in which, in addition to the channels and feed-
throughs the over-the-cell areas are available for routing. Availability of
over-the-cell areas changes the global routing problem. In Chapter 8, this
approach is discussed in detail.

3. Gate array: In gate array design style, the size and location of all cells
and the routing channels and their capacities are fixed by the architec-
ture. This is the key difference between gate array and other design
styles. Unlike the full custom design style and standard cell design style
the primary objective of the global routing in gate arrays is to guarantee
routability. The secondary objective may be to minimize the total wire
length or to minimize the maximum wire length. Other than these objec-
tives, the formulation of global routing problem in gate array design style
is same as the general global routing formulation. If there is no feasible
solution to a given instance of global routing problem, the netlist can not
be routed (see Figure 8.14). In this case, the placement phase has to be
carried out again as the capacity of routing channels is fixed in gate array
design style.

8.1. Problem Formulation 259

260 Chapter 8. Global Routing

8.2 Classification of Global Routing
Algorithms

Basically, there are two kinds of approaches to solve global routing problem;
the sequential and the concurrent.

1. Sequential Approach: In this approach, as the name suggests, nets
are routed one by one. However, once a net has been routed it may block
other nets which are yet to be routed. As a result, this approach is very
sensitive to the order in which the nets are considered for routing. Usu-
ally, the nets are sequenced according to their criticality, half perimeter of
the bounding rectangle and number of terminals. The criticality of a net
is determined by the importance of the net. For example, clock net may
determine the performance of the circuit and therefore it is considered
to be a very important net. As a result, it is assigned a high critical-
ity number. The nets on the critical paths are assigned high criticality
numbers since they also play a key role in determining the performance
of the circuit. The criticality number and other factors can be used to
sequence nets. However, sequencing techniques do not solve the net or-
dering problem satisfactorily. In a practical router, in addition to a net
ordering scheme an improvement phase is used to remove blockages when
further routing of nets is not possible. However, this also may not over-
come the shortcoming of sequential approach. One such improvement
phase involves ‘rip-up and reroute’ [Bol79, DK82] technique, while other
involves ‘shove-aside’ technique. In ‘rip-up and reroute’, the interfering
wires are ripped up, and rerouted to allow routing of the affected nets.
Whereas, in ‘Shove-Aside’ technique, wires that will allow completion of
failed connections are moved aside without breaking the existing connec-
tions. Another approach [De86] is to first route simple nets consisting of
only two or three terminals since there are few choices for routing such
nets. Usually such nets comprise a large portion of the nets (up to 75%)
in a typical design. After the simple nets have been routed, a Steiner
tree algorithm is used to route intermediate nets. Finally, a maze rout-
ing algorithm is used to route the remaining multi-terminal nets (such as
power, ground, clock etc.) which are not too numerous.

The sequential approach includes:

(a)

(b)

Two-terminal algorithms:
i. Maze routing algorithms

ii. Line-probe algorithms
iii. Shortest path based algorithms

Multi-terminal algorithms:

i. Steiner tree based algorithms

2. Concurrent Approach: This approach avoids the ordering problem
by considering routing of all the nets simultaneously. The concurrent

8.3. Maze Routing Algorithms 261

approach is computationally hard and no efficient polynomial algorithms
are known even for two-terminal nets. As a result, integer programming
methods have been suggested. The corresponding integer program is
usually too large to be employed efficiently. Hence, hierarchical methods
that work top down are employed to partition the problem into smaller
subproblems, which can be solved by integer programming. The integer
programming based concurrent approach will be presented in this chapter.

8.3 Maze Routing Algorithms

Lee [Lee61] introduced an algorithm for routing a two terminal net on a grid
in 1961. Since then, the basic algorithm has been improved for both speed and
memory requirements. Lee’s algorithm and its various improved versions form
the class of maze routing algorithms.

Maze routing algorithms are used to find a path between a pair of points,
called the source(s) and the target(t) respectively, in a planar rectangular grid
graph. The geometric regularity in the standard cell and gate array design style
lead us to model the whole plane as a grid. The areas available for routing are
represented as unblocked vertices, whereas, the obstacles are represented as
blocked vertices. The objective of a maze routing algorithm is to find a path
between the source and the target vertex without using any blocked vertex.
The process of finding a path begins with the exploration phase, in which
several paths start at the source, and are expanded until one of them reaches
the target. Once the target is reached, the vertices need to be retraced to the
source to identify the path. The retrace phase can be easily implemented as
long as the information about the parentage of each vertex is kept during the
exploration phase. Several methods of path exploration have been developed.

8.3.1 Lee’s Algorithm

This algorithm, which was developed by Lee in 1961 [Lee61], is the most
widely used algorithm for finding a path between any two vertices on a planar
rectangular grid. The key to the popularity of Lee’s maze router is its simplicity
and and its guarantee of finding an optimal solution if one exists.

The exploration phase of Lee’s algorithm is an improved version of the
breadth-first search. The search can be visualized as a wave propagating from
the source. The source is labeled ‘0’ and the wavefront propagates to all the
unblocked vertices adjacent to the source. Every unblocked vertex adjacent to
the source is marked with a label ‘1’. Then, every unblocked vertex adjacent
to vertices with a label ‘1’ is marked with a label ‘2’, and so on. This process
continues until the target vertex is reached or no further expansion of the wave
can be carried out. An example of the algorithm is shown in Figure 8.15. Due
to the breadth-first nature of the search, Lee’s maze router is guaranteed to
find a path between the source and target, if one exists. In addition, it is
guaranteed to be the shortest path between the vertices.

262 Chapter 8. Global Routing

The input to the Lee’s Algorithm is an array B, the and
vertex. , denotes if a vertex is blocked or unblocked. The algorithm uses
an array L, where denotes the distance from the source to the vertex .
This array will be used in the procedure RETRACE that retraces the vertices
to form a path P, which is the output of the Lee’s Algorithm. Two linked lists
plist (Propagation list) and nlist (Neighbor list) are used to keep track of the
vertices on the wavefront and their neighbor vertices respectively. These two
lists are always retrieved from tail to head. We also assume that the neighbors
of a vertex are visited in counter-clockwise order, that is top, left, bottom and
then right.

The formal description of the Lee’s Algorithm appears in Figure 8.16. The
time and space complexity of Lee’s algorithm is for a grid of dimension
 .

The Lee’s routing algorithm requires a large amount of storage space and its
performance degrades rapidly when the size of the grid increases. There have
been numerous attempts to modify the algorithm to improve its performance
and reduce its memory requirements.

Lee’s algorithm requires up to bits per vertex, where bits are used to
label the vertex during the exploration phase and an additional bit is needed
to indicate whether the vertex is blocked. For an grid,
Acker [Ake67] noticed that, in the retrace phase of Lee’s algorithm, only two
types of neighbors of a vertex need to be distinguished; vertices toward the
target and vertices toward the source. This information can be coded in a
single bit for each vertex. The vertices in wavefront L are always adjacent to
the vertices in wavefront L – 1 and L + 1. Thus, during wave propagation,
instead of using a sequence 1, 2 ,3 , . . . , the wavefronts are labeled by a sequence

8.3. Maze Routing Algorithms 263

like 0, 0, 1, 1, 0, 0, …. The predecessor of any wavefront is labeled differently
from its successor. Thus, each scanned vertex is either labeled ‘0’ or ‘1’. Besides
these two states, additional states (‘block’ and ‘unblocked’) are needed for each
vertex. These four states of each vertex can be represented by using exactly
two bits, regardless of the problem size. Compared to Acker’s scheme, Lee’s
algorithm requires at least 12 bits per vertex for a grid size of 2000 × 2000.

It is important to note that Acker’s coding scheme only reduces the memory
requirement per vertex. It inherits the search space of Lee’s original routing
algorithm, which is in the worst case.

8.3.2 Soukup’s Algorithm

Lee’s algorithm explores the grid symmetrically, searching equally in the
directions away from target as well as in the directions towards it. Thus, Lee’s
algorithm requires a large search time. In order to overcome this limitation,
Soukup proposed an iterative algorithm in 1978 [Sou78]. During each iteration,
the algorithm explores in the direction toward the target without changing the
direction until it reaches the target or an obstacle, otherwise it goes away from

264 Chapter 8. Global Routing

the target. If the target is reached, the exploration phase ends. If the target is
not reached, the search is conducted iteratively. If the search goes away from
the target, the algorithm simply changes the direction so that it goes towards
the target and a new iteration begins. However, if an obstacle is reached, the
breadth-first search is employed until a vertex is found which can be used to
continue the search in the direction toward the target. Then, a new iteration
begins. Figure 8.17 illustrates the Soukup’s algorithm with an example. In
Figure 8.17, the number near a vertex indicates the order in which that vertex
was visited.

Figure 8.18 contains the formal description of Soukup’s Algorithm. The
notation used in the algorithm is similar to that used in the Lee’s algorithm
except for the array L. We use to denote the order in which the vertex
is visited during the exploration phase in this algorithm. Function
returns the direction from to Function NGHBR-IN-DIR returns
the neighbor of which is in the direction from to

The Soukup’s Algorithm improves the speed of Lee’s algorithm by a factor
of 10 to 50. It guarantees finding a path if a path between source and target
exits. However, this path may not be the shortest one. The search method for
this algorithm is a combined breadth-first and depth-first search. The worst
case time and space complexities for this algorithm are both , for a
grid of size .

8.3.3 Hadlock’s Algorithm

An alternative approach to improve upon the speed was suggested by Hadlock
in 1977 [Had75]. The algorithm is called Hadlock’s minimum detour algorithm.
This algorithm uses A* search method.

8.3. Maze Routing Algorithms 265

266 Chapter 8. Global Routing

Hadlock observed that the length of a path (P) connecting source and target
can be given by , where is Manhattan distance between
source and target and (P) is the number of vertices on path P that are directed
away from the target. The length of P is minimized if and only if is minimized
as is constant for given pair of source and target. This is the essence of
Hadlock’s algorithm. The exploration phase, instead of labeling the wavefront
by a number corresponding to the distance from the source, uses the detour
number. The detour number of a path is the number of times that the path has
turned away from the target. Figure 8.20 illustrates the Hadlock’s algorithm
with an example. In Figure 8.20, the number near a vertex indicates the order
in which that vertex was visited.

A formal description of Hadlock’s Algorithm is given in Figure 8.19. Func-
tion DETOUR-NUMBER() returns detour number of a vertex . Procedure
DELETE(nlist, plist) deletes the vertices which are in plist from nlist. Func-

8.3. Maze Routing Algorithms 267

tion MINIMUM-DETOUR(nlist) returns the minimum detour number among
all vertices in the list nlist.

The worst case time and space complexity of Hadlock’s algorithm is
for a grid of size .

8.3.4 Comparison of Maze Routing Algorithms

Maze routing algorithms are grid based methods. The time and space re-
quired by these algorithms depend linearly on their search space.

The search in Lee’s algorithm is conducted by using a wave propagating
from the source. The algorithm searches symmetrically in every direction,
using the breath-first search technique. Thus, it guarantees finding a shortest
path between any two vertices if such a path exists. However, the worst case
happens when the source is located at the center and the target is located at a
corner of routing area, in which all the vertices have to be scanned before the

268 Chapter 8. Global Routing

target is reached, (see Figure 8.21.)
The Soukup’s algorithm remedies the shortcoming of the breadth-first search

method by using a depth-first search until an obstacle is encountered. If an
obstacle is encountered, a breadth-first search method is used to get around
the obstacle. The search time in Soukup’s algorithm is usually smaller than
the Lee’s algorithm due to the nature of depth-first search method. However,
this algorithm may not find a shortest path between the source and target.
In Figure 8.22, the Soukup’s algorithm explores all the vertices and does not
find the shortest path between and . The worst case of Soukup’s algorithm
occurs when the search goes in the direction of the target, which is opposite
the direction of the passageway through the obstacle. Figure 8.23 shows an
example in which Soukup’s algorithm scans all vertices while finding a path
between and .

The Hadlock’s algorithm aims at both reducing the search time and finding
an optimal path between given two vertices. Basically, the Hadlock’s algorithm

8.4. Line-Probe Algorithms 269

is a breadth-first search method. As a result, it finds a shortest path if one
exists. The difference between the Hadlock’s algorithm and Lee’s algorithm is
the way in which the wavefront is labeled. The Hadlock’s algorithm label the
wavefront by the detour number instead of the distance from the source used in
the Lee’s algorithm. In this way, the search can prefer the direction toward the
target to the direction away from the target. This search time is shorter than
the Lee’s algorithm. When the direction of the search goes toward the target
and opposite the passageway through the obstacle, the worst case happens (see
Figure 8.24).

All the maze routers and many of their variations are grid based methods.
Information must be kept for each grid node. Thus, a very large memory
space is needed to implement these algorithms for a large grid. To give an
approximate estimate, a chip of size requires as much as 350
MBytes of memory and 66 seconds to route one net on a 15MIPS workstation.
There may be 5000 to 10000 nets in a typical chip. Such numbers make these
maze routing algorithms infeasible for large chips. In order to reduce the large
memory requirements and run times, line-probe algorithms were developed.

8.4 Line-Probe Algorithms

The line-probe algorithms were developed independently by Mikami and
Tabuchi in 1968 [MT68], and Hightower in 1969 [Hig69]. The basic idea
of a line probe algorithm is to reduce the size of memory requirement by using
line segments instead of grid nodes in the search. The time and space com-
plexities of these line-probe algorithms is O(L), where L is the number of line
segments produced by these algorithms.

The basic operations of these algorithms are as follows. Initially, lists slist
and tlist contain the line segments generated from the source and target re-
spectively. The generated line segments do not pass through any obstacle. If a
line segment from slist intersects with a line segment in tlist, the exploration
phase ends; otherwise, the exploration phase proceeds iteratively. During each
iteration, new line segments are generated. These segments originate from ‘es-
cape’ points on existing line segments in slist and tlist. The new line segments
generated from slist are appended to slist. Similarly, segments generated from
a segment in tlist are appended to tlist. If a line segment from slist intersects
with a line segment from tlist, then the exploration phase ends. The path can
be formed by retracing the line segments in set tlist, starting from the target,
and then going through the intersection, and finally retracing the line segments
in set slist until the source is reached.

The data structures used to implement these algorithms play an important
role in the efficiency considerations of the search for obstructions to probes.
Typically two lists, one for the horizontal lines and one for the vertical lines
are used. The use of two separate lists allows lines parallel to the direction of
the probe to be ignored, thus expediting the search.

The Mikami and the Hightower algorithms differ only in the process of

270 Chapter 8. Global Routing

8.4. Line-Probe Algorithms 271

choosing escape points. In Mikami’s algorithm, every grid node on the line
segment is an ‘escape’ point, which generates new perpendicular line segments.
This search is similar to the breadth-first search, and is guaranteed to find
a path if one exists. However, the path may not be the shortest one. Fig-
ure 8.25 shows a path generated by Mikami’s algorithm. On the other hand,
Hightower’s algorithm makes use of only a single ‘escape’ point on each line
segment. In the simple case of a probe parallel to the blocked vertices, the es-
cape point is placed just past the endpoint of the segment. Figure 8.26 shows a
path generated by Hightower’s algorithm. Hightower has described three such
processes, designed to help the router find a path around different types of
obstacles. The disadvantage in generating fewer escape points in Hightower’s
algorithm essentially means that it may not be able to find a path joining two
points even when such a path exists.

A formal description of these two algorithm is given in Figure 8.27. (As

272 Chapter 8. Global Routing

these two algorithms basically are the same, we just use one description for both
of them.) Procedure GENERATE(,) generates a line-probe from an escape
point , whereas, INSERT(, list) adds a line-probe to the list. Function

returns TRUE if line-probes and intersect, it returns
FALSE otherwise.

Maze routers and many of their variations are grid based methods. Infor-
mation must be kept for each grid node. Thus, a very large memory space is
needed to implement these algorithms for a large grid. The line-probe algo-
rithms, however, require the information to be kept for each line segment. Since
the number of line segments is very small compared to the nodes in a grid, the
required memory is greatly reduced. The key difference between the two line
probe algorithms is that, the Mikami’s algorithm can find a path between any
two vertices if one exists. This path may not be the shortest path. Hightower’s
algorithm may not be able to find a path joining two vertices even if such a path
exists. A comparison of the maze routing algorithms and line-probe algorithms
in their worst cases is given in Table 8.1. (h × denotes the size of grid and L
denotes the number of line segments generated in line-probe algorithms).

8.5 Shortest Path Based Algorithms

A simple approach to route a two-terminal net uses Dikjstra’s shortest al-
gorithm [Dij59]. Given, a routing graph G = (V , E), a source vertex
and a target vertex a shortest path in G joining s and t can be found
in time. The algorithm in Figure 8.28 gives formal description of an
algorithm based on Dijkstra’s shortest path algorithm for global routing a set

of two-terminal nets in a routing graph G. The output of the algorithm is a
set of paths for the nets in A path gives a path for net
The time complexity of the algorithm SHORT-PATH-GLOBAL-ROUTER is

Note that the length of an edge is increased by a factor whenever
a congested edge is utilized in the path of a net. This algorithm is suitable

8.6. Steiner Tree based Algorithms 273

for channel intersection graph, since it assumes that congested channels can be
expanded. If the edge congestions are strict, the algorithm can be modified to
use ‘rip-up and reroute’ or ‘shove aside’ techniques [Bol79, DK82].

8.6 Steiner Tree based Algorithms

Global routing algorithms presented so far are not suitable for global rout-
ing of multi-terminal nets. Several approaches have been proposed to extend
maze routing and line-probe algorithms for routing multi-terminal nets. In one
approach, the multi-terminal nets are decomposed into several two-terminal
nets and the resulting two-terminal nets are routed by using a maze routing
or line-probe algorithm. The quality of routing, in this approach, is dependent
on how the nets are decomposed. This approach produces suboptimal results
as there is hardly any interaction between the decomposition and the actual
routing phase. In another approach, the exploration can be carried out from
several terminals at a time. It allows the expansion process to determine which
pairs of pins to connect, rather than forcing a predetermined net decomposi-
tion. However, the maze routing and line-probe algorithms cannot optimally
connect the pins. In addition, these approaches inherit the large time and
space complexities of maze routing and line-probe algorithms.

The natural approach for routing multi-terminal nets is Steiner tree ap-
proach. Usually Rectilinear Steiner Trees (RST) are used. A rectilinear Steiner
tree is a Steiner tree with only rectilinear edges. The length of a tree is the
sum of lengths of all the edges in the tree. It is also called the cost of the tree.
The problem of finding a minimum cost RST is NP-hard [GJ77]. In view of
NP-hardness of the problem, several heuristic algorithms have been developed.
Most of the heuristic algorithms depend on minimum cost spanning tree. This
is due to a special relationship between Steiner trees and minimum cost span-
ning trees. Hwang [Hwa76a, Hwa79] has shown that the ratio of the cost of a
minimum spanning tree (MST) to that of an optimal RST is no greater than

274 Chapter 8. Global Routing

Let S be a net to be routed. We define an underlying grid G(S) of S (on an
oriented plane) as the grid obtained by drawing horizontal and vertical lines
through each point of S (see Figure 8.29). Let be a complete graph for
S. An MST for net S is a minimum spanning tree of (see Figure 8.29.)
Note that, there may be several MST’s for a given net and they can be found
easily. Using Hwang’s result, an approximation of the optimal RST can be
obtained by rectilinearizing each edge of an MST. Different ways of rectilin-
earizing the edges of T give different approximations. If an edge) of T is
rectilinearized as a shortest path between and on the underlying grid G(S),
then it is called as a staircase edge layout. For example, all the edge layouts in
Figure 8.29 are staircase layouts. A staircase layout with exactly one turn on
the grid G(S) is called as an L-shaped layout. A staircase layout having exactly
two turns on the grid G(S) is called as a Z-shaped layout. For example, the
edge layout of and in Figure 8.29 are L-shaped and Z-shaped layouts
respectively. An RST obtained from an MST T of a net S, by rectilinearizing
each edge of T using staircase layouts on G(S) is called S-RST. An S-RST of T,
in which the layout of each MST edge is a L-shaped layout is called an L-RST
of T. An S-RST of T, in which the layout of each MST edge is a Z-shaped
layout is called a Z-RST of T. An optimal S-RST (Z-RST, L-RST) is an S-RST
(Z-RST, L-RST) of the least cost among all S-RST’s (Z-RST’s, L-RST’s). It
is easy to see that an optimal L-RST may have a cost larger than an optimal
S-RST (see Figure 8.30), which in turn may have a cost larger than the optimal
RST. Obviously, least restriction on the edge layout gives best approximation.
However, as the number of steps allowed per edge is increased it becomes more
difficult to design an efficient algorithm to find the optimal solution.

The organization of the rest of this section is as follows: First, we discuss a
separability based algorithm to find an optimal S-RST from a separable MST.
This is followed by a discussion on non-rectilinear Steiner trees. We also discuss
MIN-MAX Steiner tree that are used for minimizing the traffic in the densest
channels. These three approaches do not consider the presence of obstacles
while finding approximate rectilinear Steiner tree for a net. At the end of this
section, we discuss a weighted Steiner tree approach that works in presence of
obstacles and simultaneously minimizes wire lengths and density of the routing
regions.

8.6.1 Separability Based Algorithm

In [HVW85], Ho, Vijayan, and Wong presented an approach to obtain an
optimal S-RST from an MST, if the MST satisfies a special property called
separability. A pair of nonadjacent edges is called separable if staircase layouts
of the two edges does not intersect or overlap. An MST is called as a separable
MST (SMST) if all pairs of non-adjacent edges satisfy this property. In other
words, such an MST is called to have separability property. If an edge is
deleted from an SMST, the staircase layouts of the two resulting subtrees do
not intersect or overlap each other. Overlaps can occur only between edges that
are incident on a common vertex. This property enables the use of dynamic

8.6. Steiner Tree based Algorithms 275

programming techniques to obtain an optimal S-RST.
The algorithm works in two steps. In the first step, an SMST T is con-

structed for a given net by using a modified Prim’s algorithm [Pri57] in
time. In the second step, an optimal Z-RST is obtained by using

the SMST obtained in the first step in time, where is the
maximum of t(e) over all edges e and t(e) denote the number of edges on the
underlying grid traversed by any staircase layout of an edge e of the
MST T of net According to the Z-sufficiency Theorem in [HVW85], an
optimal Z-RST is an optimal S-RST. The optimal S-RST is used as an approx-
imation of the minimum cost RST. In the rest of this section, we discuss these
two steps in detail.

1. Algorithm SMST: Let denote the complete graph for net
For any vertex and , x (i) and y (i) denote the of vertex
 on a Cartesian plane, and dist denotes the total length of short-
est path between i and . Function W,T), takes the complete

and an array (W) containing weights of edges in as input. It
generates a separable MST T using a modified Prim’s algorithm for MST,
which has a time complexity of The formal description of algo-
rithm SMST appears in Figure 8.31. The time complexity of algorithm
SMST is

276 Chapter 8. Global Routing

2. Algorithm Z-RST: The input to the algorithm is an SMST T of a
net By hanging the input separable MST T by any leaf edge r, a
rooted tree can be obtained. For each edge e in T, let denote the
subtree of that hangs by the edge e. Given a Z-shaped layout z of an
edge e, we let denote the Z-RST of the subtree which has the
minimum cost among all Z-RST’s of in which the layout of the edge e
is constrained to be the Z-shape z. can be computed recursively as
follows: Let be the d child edges of e in the rooted tree

For each child edge and for each possible Z-shaped layout of
the edge recursively compute the constrained optimal Z-RST’s
of the subtrees Let the number of such constrained Z-RST’s for a
subtree be denoted as Taking one such Z-RST for each subtree

and merging these subtree Z-RST’s with the layout z of the edge e,
results in a Z-RST of Since the tree T has the separability property,
the only new overlaps that can occur during this merging are among the
edges which are all incident on a common point. Therefore,
the total amount of overlap in the resulting Z-RST of is the sum of
the overlaps among the layouts of the edges added to the
sum of overlaps in the selected Z-RST’s of the subtrees Enumerate
all combinations of selecting one of the Z-RST’s for each subtree

and for each such combination compute the resulting Z-RST of
The constrained optimal Z-RST of the subtree is simply the
one with the least cost. To compute the optimal Z-RST of the entire
rooted tree recursively compute (as explained above) the constrained
optimal Z-RST’s for each Z-shaped layout z of the root edge r, and
select that Z-RST of the smallest cost, (see Figure 8.32)

A recursive definition of Function LEAST-COST is given Figure 8.33.
Function takes a Z-shaped layout z of
an edge e, and a subtree as input. The output of function LEAST-
COST is the optimal Z-RST(denoted as) of for the z layout of
edge e and the cost (denoted as) of Function CHILD-

8.6. Steiner Tree based Algorithms 277

EDGES-NUM(e) returns the number of child edges of an edge e.

Let be the leaf edge that is used to hang the SMST T, and be the tree
obtained, then the output of the algorithm in Figure 8.34 is the optimal
Z-RST (M) of T and its cost CostM.

The fact that the algorithm Z-RST constructs the optimal S-RST fol-
lows from the separability of the input MST and from the Z-sufficiency
theorem stated below.

Theorem 6 (Z-Sufficiency Theorem): Given an SMST T of a point set
S of cardinality , there exists a Z-RST of T whose cost is equal to the
cost of an optimal S-RST of T.

The worst case time complexity of algorithm Z-RST is
where is the maximum of t(e) over all edges e.

8.6.2 Non-Rectilinear Steiner Tree Based Algorithm

Burman, Chen, and Sherwani [BCS91] studied the problem of global routing
of multi-terminal nets in a generalized geometry called in order to
improve the layout and consequently enhance the performance. The restriction
of layout to rectilinear geometry, and thus only rectilinear Steiner trees, in the
previous Steiner tree based global routing algorithms was necessary to account
for restricted computing capabilities. Recently, because of enhanced computing
capabilities and the need for design of high performance circuit, non-rectilinear
geometry has gained ground. In order to obtain smaller length Steiner trees, the
concept of separable MST’s in was introduced. In edges
with angles for all , are allowed, where is a positive integer.
4 and correspond to rectilinear, 45° and Euclidean geometries respectively.
Obviously, we can see that always includes rectilinear edges and is a
useful with respect to the fabrication technologies. It has been proved [BCS91]

278 Chapter 8. Global Routing

8.6. Steiner Tree based Algorithms 279

that for an even all minimum cost spanning trees in satisfy
the separability property.

Theorem 7 Any minimum spanning tree for a given point set in the plane is
for any even

Therefore, there exists a polynomial time algorithm to find an optimal
Steiner tree in which is derivable from the separable minimum
spanning tree. The experiments have shown that tree length can be reduced
up to 10-12% by using 4-geometry as compared to rectilinear geometry (2-
geometry). Moreover, length reduction is quite marginal for higher geometries.
As a consequence, it is sufficient and effective to consider layouts in 4-geometry
in the consideration of global routing problem. An example of the derivation
of a Steiner tree for a simple two-terminal net in 4-geometry is shown in Fig-
ure 8.35(b) while Figure 8.35(a) shows the derivation of a Steiner tree for the
same net in rectilinear geometry. Clearly, the tree length in 4-geometry is
shorter than the one in the rectilinear geometry.

8.6.3 Steiner Min-Max Tree based Algorithm

The approach in [CSW89] uses a restricted case of Steiner tree in global
routing problem, called Steiner Min-Max Tree (SMMT) in which the maximum
weight edge is minimized (real vertices represent channels containing terminals
of a net, Steiner vertices represent intermediate channels, weights correspond
to densities). They give an time algorithm for
obtaining a Steiner min-max tree in a weighted coarse grid graph G = (V, E).
The weight of an edge in E is a function of current density, capacity, and
measures crowdedness of a border. Each vertex in V is labeled with demand or

280 Chapter 8. Global Routing

(potential) Steiner depending on whether it is respectively a terminal of net
or not. A Steiner min-max tree of G dictates a global routing that minimizes
traffic in the densest channel. While the Steiner min-max tree method tends to
route nets through less crowded channels, it is also desirable to have nets with
short length. Therefore, among all Steiner min-max trees of the given net, we
are interested in those with minimum length. The problem of finding a Steiner
min-max tree whose total length is minimized is NP-hard.

Given, a weighted coarse grid graph G = (V, E) and a boolean array
such that i is true if the vertex corresponds to a terminals of
An SMMT T of can be obtained using algorithm in Figure 8.36. Function
EXIST-ODSV returns TRUE if there exists a one-degree Steiner vertex
in T. Function GET-ODSV returns a one-degree Steiner vertex from T.
REMOVE(v, T) removes vertex and edges incident on it from T.

Theorem 8 Algorithm SMMT correctly computes a Steiner min-max tree of
net in weighted grid graph G = (V, E) in time.

A number of heuristics have been incorporated in the global router based on
the min-max Steiner trees. The nets are ordered first according to their priority,
length and multiplicity numbers. The global routing is then performed in two
phases: the SMMT-phase and the SP-phase. The SP-phase is essentially a
minimum-spanning tree algorithm. The SMMT-phase consists of steps and
the SP-phase consists of steps, where and are heuristic parameters
based on the importance of density and length minimization in a problem,
respectively.

In the SMMT-phase, the nets are routed one by one, using the algorithm
SMMT. At the -th step of the SMMT-phase, if the length of routing of is
within a constant factor, of its minimum length then it is accepted, otherwise,
the routing is rejected. Once a net is routed during SMMT-phase, it will not
be routed again.

8.6. Steiner Tree based Algorithms 281

In the SP-phase, the nets are routed one by one by employing a shortest-
path heuristic and utilizing the results from the SMMT-phase. At the j-th step
we accept a routing only if it is better than the best routing obtained so far.

8.6.4 Weighted Steiner Tree based Algorithm

Several global routing algorithms have been developed that consider mini-
mizing the length of Steiner tree as the primary objective and minimizing the
traffic through the routing areas as the secondary objective and vice versa.
In [CSW92], Chiang, Sarrafzadeh, and Wong proposed a global router that
simultaneously minimizes length and density by using a weighted Steiner tree.
Consider a set of weighted regions in an arbitrary-style
layout, where weight of a region is proportional to its density and area. The
regions with blockages are assigned infinite weights. A weighted Steiner tree is
a Steiner tree with weighted lengths, i.e., an edge with length / in a region with
weight has weighted length . . A weighted rectilinear Steiner tree (WRST)
is a weighted Steiner tree with rectilinear edges. A minimum-weight WRST is
a WRST with minimum total weight.

The 2-approximate algorithm to find an approximation of minimum-weight
WRST is as discussed below: First step of this algorithm is to find an MST
T for a given net using Prim’s algorithm. Let be the edges
of T. In the second step, the edges of T are rectilinearized one by one. In
general, there are more than one possible staircase layouts for an edge of T.
Let be a subset of all possible staircase layouts for
edge Let denotes the staircase layout of edges Let

be the layout obtained by merging and is selected to be
the minimum cost layout among all

The formal description of the algorithm is given in Figure 8.37. Func-
tion finds and function CLEANUP removes over-

282 Chapter 8. Global Routing

lapped layouts. Function gives the total weighted length of
The time complexity of algorithm LAYOUT-WRST is

8.7 Integer Programming Based Approach

The problem of concurrently routing all the nets is computationally hard.
The only known technique uses integer programming. In fact, the general
global routing problem formulation can be easily modified to a 0/1 integer pro-
gramming formulation. Given a set of Steiner trees for each net and a routing
graph, the objective of such an integer programming formulation is to select
a Steiner tree for each net from its set of Steiner trees without violating the
channel capacities while minimizing the total wire length. This approach is well
suited when there is a preferred set of Steiner trees for each net. However, as
the size of input increases the time required to solve corresponding integer pro-
gram increases exponentially. Thus it is necessary to break down the problem
into several small subproblems, solve them independently and combine their
solutions in order to solve the original problem.

8.7.1 Hierarchical Approach

In this section, we discuss the hierarchical based integer program for global
routing, presented by Heisterman and Lengaur [HL91]. Let
denote a set of sets of vertices in the routing graph G = (V,E). Let

denote a set of Steiner trees for Then,
the global routing problem can be formulated as an integer program by taking
an integer variable to denote the number of nets which are routed using

is called a net type and a route for Let denote the number of nets
corresponding to the net type for The following constraints
have to be met:

(completeness constraints)
(capacity constraints)

The variable is a slack variable for edge e which denotes the free capacity
of e. Technology constraints may have to be added to this system. The cost
function to be minimized is

where is the length of the Steiner tree
The resulting integer program is denoted by R. It cannot be solved efficiently

because of its size and NP-hardness of integer programming. Hierarchical global
routing methods break down the integer program into pieces small enough to
be solved exactly. The solutions of these pieces are then combined by a variety

8.7. Integer Programming Based Approach 283

of methods. This results in an approximate solution of the global routing
problem.

Hierarchical methods that work top down are especially effective because
they can take into account global knowledge about the circuit. Top-down
methods start with a cut-tree for the circuit emerging from a floorplanning
phase that uses circuit partitioning methods. The cut-tree is preprocessed so
that each interior node of the tree corresponds to a simple routing graph as
shown in Figure 8.38.

The cut-tree is then traversed top down. At each node a global routing
problem is solved on the corresponding routing graph. The solutions for all
nodes in a level of the cut-tree are combined. The resulting routing influences
the definition of the routing problems for the nodes in the next lower level.

The small integer programs corresponding to the routing problems at each
interior node of the cut-tree can be solved by general integer programming
techniques. However, this solution may be computationally infeasible. In the
best case the linear relaxation of the integer program, i.e., the linear program
obtained by eliminating the integrality constraint has to be solved. Since a
large number of integer programs have to be solved during the course of global
routing, speeding up the computations is necessary. One possibility is to round
off the solution of the linear relaxation deterministically or by random methods.
This may not lead to an optimal solution. So, it is desirable to exactly solve
the integer program corresponding to the routing problem at interior nodes of
the cut-tree. Because integer programs corresponding to small routing graphs
are quite structured, appropriate preprocessing can substantially reduce the
size of the integer programs, and sometimes eliminate them altogether. For
example, there exists a greedy algorithm [HL91] to solve the corresponding
integer programming problem for a small routing graph in Figure 8.39.
This algorithm will be described in the remainder of the section.

We assume that the length of each edge is the distance between the centers
of vertices. In Figure 8.39, a specific floorplan pattern is depicted that is dual
to Figure 8.40 depicts all possible net types and routes for The size
of the integer program that corresponds to is reduced by combinatorial
arguments on the patterns.

A simple greedy preprocessing strategy can be used for reducing the size of
the integer program This strategy is the first phase of the greedy routing

284 Chapter 8. Global Routing

algorithm. It constructs a smaller integer program and is followed by two
more phases. The second phase further reduces the size of and constructs a
small mixed integer program The third phase solves the integer program

During the first phase, for the algorithm routes
nets by using It delete the routed nets from the problem instance and

reduces the capacity of each edge by the number of routed nets crossing
Now if there are still nets left in type then is saturated. This fact

eliminates all routing patterns in Figure 8.40 that include edge After the
deletion, the pattern set for is identical with the pattern set for i = 9,
and the pattern set for is identical with the pattern set for
Thus the net types and are merged with net type and the net types

and are merged with net type Net type cannot be eliminated.
As a result, the original problem has been reduced into a problem with
fewer variables and constraints.

The second phase further reduces The result is a very small mixed
integer program that can be solved with traditional integer programming
techniques. Two cases have to be distinguished.

1. There are no more nets of Type to be routed: In this case,
the integer program only contains nets of types An inspection
of Figure 8.40 shows that for the long routing patterns for
net type also occur as routing patterns for net type This suggests
elimination of the variables corresponding to the long routing patterns
for net types to from The variables then
count the nets of these types that are routed with the short routes. All
other nets of these types should be counted by the variables for net type

This can be achieved by introducing slack variables to denote the
number of nets of type that can not be routed by the short routing
patterns of type for Thus, the completeness constraints
can now be given as:

8.7. Integer Programming Based Approach 285

286 Chapter 8. Global Routing

All the other equations remain the same. This yields the integer program

The integrality constraints in the resulting integer program can be elim-
inated for some variables. Specifically, since all coefficients are integers,
the integrality constraint can be omitted for one variable per constraint.
The number of integer variables is thus reduced and the solution of the
integer program by such techniques as branch-and-bound becomes more
efficient.

There are more nets of Type to be routed: In this case, edge
is saturated after the first phase. This saturation eliminates all routing
patterns containing this edge. The resulting integer program is then
subjected to an analogous reduction procedure as in the first case. Nets
of types that cannot be routed with short routes are subsumed
in type

2.

The third phase of the algorithm solves the small mixed integer program
obtained in Phase 2 and interprets the solution.
In addition to the formulation of the global routing problem as finding a

set of Steiner trees described above, the global routing problem can also be
formulated as finding the optimal spanning forest (a generalization of optimal
spanning trees) on a graph that contains all of the interconnection informa-
tion. Cong and Preas presented a concurrent approach based on this formula-
tion [CP88].

8.8 Performance Driven Routing

With the advent of deep submicron technology, interconnect delay has be-
come an important concern in high performance circuit design. Interconnect
delay is now a significant part of the total net delay. The reduction in feature
sizes has resulted in increased wire resistance and net delay. The increased
proximity between the devices and interconnection wires resulting in increased
cross-talk noise.

The routers should now model the cross-talk noise between adjacent nets
during topology generation. Buffer Insertion, wire sizing, and high performance
topology constructions are some of the techniques adopted to reduce generate
routing for high performance circuits. Zhou and Wong [Won98] considered
crosstalk avoidance during global routing.

Lillis, Cheng, Lin and Ho [CH96] presented techniques for performance
driven routing techniques with explicit area-delay trade-off and simultaneous
wire sizing. In [Buc98] Lillis and Buch present table-lookup methods for im-
proved performance driven routing.

8.9. Summary 287

8.9 Summary

Global routing assigns a sequence of routing channels to each net without
violating the capacity of channels. In addition, it typically optimizes the to-
tal wire length. In high performance circuits, the optimization function is to
minimize the critical RC delay of the nets. Different design style have different
objective functions. In standard cell design style, the optimization function is
to minimize the total channel height. Whereas, in gate array design style the
objective is to guarantee routability.

The global routing algorithms fall roughly into two categories: One is the
sequential approach and the other is the concurrent approach. In sequential
approach, the nets are routed one by one. However, the nets which have been
already routed may block the nets to be routed later. Thus, the order in which
the nets are routed is very important. Maze routing algorithms, line-probe al-
gorithms and Steiner tree based algorithms are important classes of algorithms
in this approach. The first two class of algorithms are used for two-terminal
nets, whereas, the Steiner tree algorithms are used for the multi-terminal nets.
The general rectilinear Steiner tree problem is NP-hard, however, approximate
algorithms have been developed for this problem. The concurrent approach
takes a global view of all nets to be routed at the same time. This approach
requires use of computationally expensive methods. One such method uses
integer programming. Integer program for an overall problem is normally too
large to be handled efficiently. Thus, hierarchical top down methods are used to
break the problem into smaller sub-problems. These smaller sub-problems can
be solved efficiently. The solutions are then combined to obtain the solution of
original global routing problem.

288 Chapter 8. Global Routing

8.10 Exercises

1.

2.

3.

†4.

†5.

6.

†7.

8.

Design and implement an algorithm to find the extended channel inter-
section graph if the size and location of all cells are known.

Assume that several nets have been assigned feed-throughs in a standard
cell layout with K cell rows. A two-terminal net N that starts at a
terminal on cell row and ends at a terminal on cell row has to be
added to this layout, where Design an optimal algorithm
to assign feed-throughs to N such that increase in the overall channel
height of the layout is minimized.

Figure 8.41 shows a grid graph with several blocked vertices. It also
shows terminals of a two-terminal net marked by ‘1’. Use the Lee’s
algorithm to find:

(a)

(b)

the path for

the number of nodes explored in (a).

Use the Soukup’s algorithm to find (a) and (b). Use the Hadlock’s algo-
rithm to find (a) and (b).

Extend Lee’s maze router so that it generates a shortest path from source
to target with the least number of bends.

Design an efficient heuristic algorithm based on maze routing to simulta-
neously route two 2-terminal nets on a grid graph. Compare the routing
produced by this algorithm with that produced by Lee’s maze router by
routing one net at a time.

Give an example for which the Hightower line-probe algorithm does not
find a path even when a path exists between the source and the target.

In Mikami’s line-probe router, every grid node on the line segment is
an escape point on each line segment. Whereas, Hightower’s algorithm
makes use of only single escape point on each line segment. As a result,
Hightower’s algorithm runs faster than Mikami’s algorithm. Also, High-
tower’s algorithm may not be able to find a path even when one exists.
On the other hand, Mikami’s algorithm always finds a path if one exists.
The number and location of escape points plays very important role in
the performance of the router.

Implement a line-probe router which can use number of escape points,
where is a user specified parameter. Use an efficient heuristic for the
location of the escape points.

In Figure 8.42, terminals of two nets and are shown on a grid
graph. Terminals of net are marked by ‘1’ and that of are marked
by ‘2’. Find an MRST for

8.10. Exercises 289

9. For the example in Figure 8.42, find an RST for each net and such
that they do not intersect with each other and

(a)

(b)

the summation of the cost of these two RST’s is minimum,

the maximum of the costs of these two RST’s is minimum.

10.

11.

†12.

†13.

†14.

†15.

†16.

Design an algorithm to determine an MRST of a multi-terminal net in a
 grid graph.

Compute the number of intersection points in an underlying grid of a
set of points in Is it sufficient to consider just the edges of
underlying grid graph to construct a Steiner tree in

Why does the algorithm Z-RST gives an optimal S-RST for a separable
MST? In other words, prove Theorem 6.

Implement the algorithm to find an optimal S-RST for any given net.

Prove Theorem 7 and modify the algorithm Z-RST to use

Prove Theorem 8.

The problem of finding a Steiner tree for a K-terminal net in a grid graph
is known to be NP-complete. Design an efficient heuristic algorithm based
on maze routing for this problem.

Bibliographic Notes
Besides the classes of global routing algorithms described above, there are other
global routing algorithms that use different approaches and have different op-
timization functions. Shragowitz and Keel proposed a global router based on

290 Chapter 8. Global Routing

a multicommodity flow model [SK87]. Vecchi and Kirkpatrick discussed the
global wiring by simulated annealing [VK83]. A practical global router for
row-based layout such as sea-of-gate, gate array and standard cell was devel-
oped by Lee and Sechen in 1988 [LS88]. Karp and Leighton discuss the
problem of global routing in two-dimensional array An interior
point method (Karmarkar’s Algorithm) can be applied to solve the linear pro-
gramming model of global routing problem [HS85, AKRV89, Van91]. A path
selection global router is developed by Hsu, Pan, and Kubitz [HPK87]. A novel
feature of the algorithm is that the active vertices (vertices in the net which
are not yet connected) are modeled as magnets during the path search process.
Several global routing algorithms, including the one based on wave propaga-
tion and diffraction, a heuristic minimum tree algorithm using “common edge”
analysis, an overflow control method, and global rerouting treatment are dis-
cussed in [Xio86]. A simple but effective global routing technique was proposed
by Nair, which iterates to improve the quality of wiring by rerouting around
congested areas [Nai87], A global routing algorithm in a cell synthesis system
was proposed by Hill and Shugard [HS90], which includes detailed geometric
information specific to the cell synthesis problem. The system models diffu-
sion strips, congestion and existing feedthroughs as a cost function associated
with regions on the routing plane.

The placement and routing can be combined together so that every place-
ment can be judged on the basis of the routing cost. Researchers have produced
some useful results in this direction. Burstein and Hong presented an algorithm
to interleave routing with placement in a gate array layout system [BH83]. Dai
and Kuh presented an algorithm for simultaneous floorplanning and global rout-
ing based on hierarchical decomposition [DK87a]. Suaris and Kedem presented
an algorithm for integrated placement and routing based on quadri-section hier-
archical refinement [SK89]. An algorithm which combines the pin assignment
step and the global routing step in the physical design of VLSI circuits is pre-
sented by Cong [Con89]. The sequential algorithms for routing require large
execution time. Jonathan Rose [Ros90] developed a parallel global routing al-
gorithm which route multiple nets in parallel by relaxing data dependencies.
The speedup is achieved at expense of losing some quality of the routing. The
global routing problem is formulated at each level of hierarchy as a series of the
minimum cost Steiner tree problem in a special class of partial 3-trees, which
can be solved optimally in linear time. In [CH94] Chao and Hsu present a new
algorithm for constructing a rectilinear Steiner tree for a given set of points. In

Hong, Xue, Kuh, Cheng, and Huang present two performance-driven
Steiner tree algorithms for global routing which consider the minimization of
timing delay during the tree construction as the goal. In [HHCK93] Huang,
Hong, Cheng, Kuh propose an efficient timing-driven global routing algorithm
where interconnection delays are modeled and included during routing and
rerouting process in order to minimize the routing area as well as to satisfy
timing constraint.

