Chapter 9

Detailed Routing

In a two-phase routing approach, detailed routing follows the global routing
phase. During the global routing phase, wire paths are constructed through
a subset of the routing regions, connecting the terminals of each net. Global
routers do not define the wires, instead, they use the original net information
and define a set of restricted routing problems. The detailed router places the
actual wire segments within the region indicated by the global router, thus
completing the required connections between the terminals.

The detailed routing problem is usually solved incrementally, in other words,
the detailed routing problem is solved by routing one region at a time in a
predefined order. The ordering of the regions is determined by several factors
including the criticality of routing certain nets and the total number of nets
passing through a region. A routing region may be channel, 2D-switchbox or
a 3D-switchbox. Channels can expand in Y direction and their area can be
determined exactly only after the routing is completed. If this area is different
than the area estimated by the placement algorithm, the placement has to be
adjusted to account for this difference in area. If the floorplan is slicing then
a left to right sweep of the channels can be done such that no routed channel
has to be ripped up to account for the change of areas. Consider the example
shown in Figure 9.1 (a). In this floorplan, if channel 1 is routed first followed
by routing of channel 2 and channel 3, no rerouting would be necessary. In
fact, complete routing without rip-up of an already routed channel is possible
if the channels are routed in the reverse partitioning order. If the floorplan is
non-slicing, it may not be possible to order the channels such that no channel
has to be ripped up. Consider the example shown in Figure 9.1(b). In order
to route channel 2, channel 1 has to be routed so as to define all the terminals
for channel 2. Channel 2 has to be routed before channel 3 and channel 3
before channel 4. Channel 4 requires routing of channel 1 giving rise to a cyclic
constraint for ordering the channels. This situation is resolved by the use of L-
channels or 2D-switchboxes. L-channels are not simple to route and are usually
decomposed. Figure 9.1(c) shows decomposition of an L-channel into two 3-
sided channels while Figure 9.1(d) shows decomposition of an L-channel into

292 Chapter 9. Detailed Routing

(a) (b)

Switchbox |

N

(c) (d)

Figure 9.1: Channels and Switchboxes.

two 3-sided channels and a 2D-switchbox. The area of switchboxes (both 2D
and 3D) is fixed and the main issue is routability. That is, given a specific area
and pin locations for all the nets, is this switchbox routable ?. If a switchbox
is unroutable, then the design must be re-global routed. In terms of routing
complexity, channels are easy to route, 2D-switchboxes are harder and 3D-
switchboxes are hardest to route.

Characteristics of a routing problem largely depend upon the topology of
the routing region. Routing regions consist of one or more layers. In the
general case, even single-layer routing problems are NP-complete [Ric84]. In
multi-layer routing problems, the wires can switch adjacent layers at certain
locations using vias. A via is an electrical connection (contact) between wire
segments on adjacent layers. In many multi-layer models, the layers are re-
stricted to contain either horizontal or vertical segments (a straight piece of
wire placed on a single layer) of a wire. This type of model is known as a
restricted layer model or reserved layer model. Multilayer routing problems are
also NP-complete [Szy85], even when the routing region has a simple shape. For
this reason many of the algorithms for multi-layer routing problems are heuris-
tic in nature. Different detailed routing strategies have been developed with
a variety of objectives, but all the detailed routing problems share some com-
mon characteristics. These characteristics deal with routing constraints. For

9.1. Problem Formulation 293

example, wires must satisfy some geometric restrictions which often concern
wire thickness, separation, and path features. One obvious restriction present
in all routing problems is intersection; that is, no two wires from different nets
are allowed to cross each other on the same layer.

A primary objective function of a router is to meet timing constraints for
each net and complete the routing of all the nets. Channel routers attempt to
minimize the total routing area. Various secondary objective functions have
also been considered, such as, improve manufacturability by minimizing the
number of vias and jogs, improve performance by minimizing crosstalk between
nets and delay for critical nets, among others. Minimizing vias is important,
since vias are difficult to fabricate due to the mask alignment problem. In
addition, via’s increase delay and are therefore undesirable in high-performance
applications. Other objective functions include minimization of the average or
total length of a net, and minimization of the number of vias per net.

In this chapter, we discuss the routing problem and various algorithms
proposed to solve different versions of the routing problem. In the next section,
we first formulate the routing problem and classify different routing problems.

9.1 Problem Formulation

As mentioned earlier, the detailed routing problem is solved by solving one
routing region at a time. The routing area is first partitioned into smaller
regions. Since, the global router only assigns wires to different regions, the
detailed routing problem is to find the actual geometric path for each wire in
a region. The complexity of the routing problems varies due to many factors
including shape of the routing region, number of layers available, and num-
ber of nets. However, the shape of the region is perhaps the most important
factor. Before presenting the routing problem formally, we describe important
considerations and models used in routing.

9.1.1 Routing Considerations

In general, the routing problem has many parameters. These parameters are
usually dictated by the design rules and the routing strategy.

1. Number of terminals: Majority of nets are two terminal nets, how-
ever, the number of terminals in a net may be very large. This is es-
pecially true for global nets such as clock nets. In order to simplify the
routing problem, traditionally, routing algorithms assume all nets to be
two terminal nets. Each multi-terminal net is decomposed into several
two terminal nets. More recently, algorithms which can directly handle
multi-terminal nets have also been developed.

2. Net width: The width of a net depends on the layer it is assigned
and its current carrying capacity. Usually, power and ground nets have
different widths and routers must allow for such width variations.

294

Chapter 9. Detailed Routing

Pin locations: In channels, pins are located on the top and bottom
boundaries. In addition, pin may be located on the sides as well as in
the middle of the channel to connect to 3D-switchboxes. The pins on
the sides are assigned by the global router. In 2D-switchboxes, the pin
are located on all four sides as well as in the middle. The most general
form of routing region is a 3D-switchbox, which has pins on all six sides.
The pins of the bottom are assigned by the global router so that nets
are pass from channels and 2D-switchboxes to 3D-switchboxes and vice
versa. The pins on the sides allow nets to pass from one 3D-switchbox to
another. The pins on the top allow nets to connect to C4 solder bumps.

Via restrictions: The final layout of a chip is specified by means of
masks. The chip is fabricated one layer at a time, and the masks for
the various layers must align perfectly to fabricate the features such as
vias which exist in two layers. Perfect alignment of masks is difficult,
and thus vias were normally only allowed between adjacent layers. Even
between two layers, minimization of vias reduces mask alignment prob-
lems. Improvements in the chip manufacturing technology have reduced
mask alignment problems, and today stacked vias (vias passing through
more than two layers) can be fabricated. However, vias still remain a
concern in routing problems and must be minimized to improve yield,
performance and area.

Boundary type: A boundary is the border of the routing region which
contains the terminals. Most detailed routers assume that the bound-
aries are regular (straight). Even simple routing problems which can be
solved in polynomial time for regular boundaries become NP-hard for the
irregular boundary routing problem. Some recent routers [Che86, CKS86,
VCWS89] have the capability of routing within irregular boundaries.

. Number of layers: Almost all fabrication processes allow three or four

layers of metal for routing. Recently, a fifth metal layer has also become
available; however, its usage is restricted due to its cost. Six and seven
layer processes are expected to be available within two to three years.
Most existing detailed routers assume that there are two or three layers
available for routing. Recently, several n-layer routers have also been
developed. Each layer is sometimes restricted to hold either vertical or
horizontal segments of the nets. It is expected that as the fabrication
technology improves, more and more layers will be available for rout-
ing. In our formulation of five metal process, channel and 2D-switchbox
routers must route in M1, M2 and M3. While, 3D-switchbox router must
route in M4 and MS5.

Net types: Some nets are considered critical nets. Power, ground, and
clock nets fall in this category. Power, and ground wires need special
consideration since they are normally wider than signal wires. Clock nets
require very careful routing preference, since the delay of the entire chip
may depend on clock routing. Due to this type of restriction placed on

9.1. Problem Formulation 295

(a) (b)

Figure 9.2: (a) Grid-based. (b) Gridless.

critical nets, they need to be routed before signal nets using specialized
routers or often routed by hand.

9.1.2 Routing Models

For ease of discussion and implementation of net-routing problems, it is often
necessary to work at a more abstract level than the actual layout. In many
cases, it is sufficient to use a mathematical wiring model for the nets and the
rules that they must obey. For instance, wires are usually represented as paths
without any thickness, but the spacing between these wires is increased to allow
for the actual wire thickness and spacing in the layout. The most common
model used is known as the grid-based model. In this model, a rectilinear (or
possibly octilinear) grid is super-imposed on the routing region and the wires
are restricted to follow paths along the grid lines. A horizontal grid line is
called a track and a vertical grid line is called a column. Any model that does
not follow this ‘gridded’ approach is referred to as a gridless model

In the grid-based approach, terminals, wires and vias are required to con-
form to the grid. The presence of a grid makes computation easy but there
are several disadvantages associated with this approach, including the large
amount of memory required to maintain the grid and restricted wire width.
The gridless approach, on the other hand, allows arbitrary location of termi-
nals, nets, and vias. Moreover, nets are allowed arbitrary wire widths. Due
to these advantages, the gridless approach is gaining more popularity than the
grid-based approach [Che86, CK86]. Figure 9.2 illustrates some of the differ-
ences in grid-based and gridless routing.

Routing problems can also be modeled based on the layer assignments of
horizontal and vertical segments of nets. This model is applicable only in multi-
layer routing problems. If any net segment is allowed to be placed in any layer,
then the model is called an unreserved layer model. When certain type of seg-

296 Chapter 9. Detailed Routing

~| . Track 3

-—- Track 2

— Track 1

Track |

Unreserved Layer Model

Figure 9.3: A comparison between HVH, VHV, and unreserved layer models.

ments are restricted to particular layer(s), then the model is called a reserved
layer model. Most of the existing routers use reserved layer models. In a two-
layer routing problem, if the layer 1 is reserved for vertical segments and layer 2
is reserved for horizontal segments, then the model is called a VH model. Sim-
ilarly, a HV model allows horizontal segments in layer 1 and vertical segments
in layer 2. Two-layer models can be extended to three-layer routing models:
VHYV (Vertical-Horizontal-Vertical) or HVH (Horizontal-Vertical-Horizontal).
In the VHV model the first and third layers are reserved for routing the verti-
cal segments of nets and the second layer is reserved for routing the horizontal
segments. On the other hand, in the HVH model, the first and third layers
are reserved for routing the horizontal segments of nets and the second layer is
reserved for routing the vertical segments. The HVH model is preferred to the
VHYV model in channel routing because, in contrast with the VHV model, the
HVH model offers a potential 50% reduction in channel height.

Figure 9.3 shows an example of the HVH model using two tracks, the VHV
model using three tracks, and the unreserved model using only one. The HVH
model and unreserved layer models show more than one trunk per track in Fig-
ure 9.3. This is done because the horizontal segments were placed on different
layers, the figure offsets them slightly for a clearer perspective of the routing.
An unreserved layer model has several other advantages over the reserved layer
model. This model uses less number of vias and in fact, in most cases, can lead
to an optimal solution, i.e., a solution with minimum channel height. The un-
reserved routing model also has it disadvantages, such as, routing complexity,
blocking of nets, among others. Generally speaking, reserved layer and gridded
routers are much faster than gridless and unreserved layer routers.

Another unreserved layer model based on use of knock-knees has also been

9.1. Problem Formulation 297

Terminal
1 4 2l/0 2 1 1 0 3 4 0
: Upper boundary Lower Boundary :

301 2 0 3 4 0 0 2 3

Netlist 14202110340
30120340023

Figure 9.4: A channel and its associated net list.

proposed. The knock-knee model allows two nets to share a grid point if they
are in different layers. This model has the advantage of avoiding undesirable
electrical properties caused due to overlap of wire segments, such as capacitive
coupling.

We now discuss the problem formulation for both channel and switchbox
routing problems.

9.1.3 Channel Routing Problems

A channel is a routing region bounded by two parallel rows of terminals.
Without loss of generality, it is assumed that the two rows are horizontal. The
top and the bottom rows are also called top boundary and bottom boundary,
respectively. Each terminal is assigned a number which represents the net to
which that terminal belongs to (see Figure 9.4). Terminals numbered zero are
called vacant terminals. A vacant terminal does not belong to any net and
therefore requires no electrical connection. The net list of a channel is the
primary input to most of the routing algorithms.

The horizontal dimension of the routed channel is called the channel length
and the vertical dimension of the routed channel is called the channel height.
The horizontal segment of a net is called a trunk and the vertical segments that
connect the trunk to the terminals are called its branches. The horizontal line
along which a trunk is placed is called a track. A dogleg is a vertical segment
that is used to maintain the connectivity of the two trunks of a net on two
different tracks. A pictorial representation of the terms mentioned above is
shown in Figure 9.5.

A channel routing problem (CRP) is specified by four parameters: Channel
length, Top (Bottom) terminal list, Left (Right) connection list, and the num-
ber of layers. The channel length is specified in terms of number of columns in
grid based models, while in gridless models it is specified in terms of A. The
Top and the Bottom lists specify the terminals in the channel. The Top list
is denoted by T' = (T1, T3, ..., T},,) and the bottom list by B = (By, Ba, ...,
B,,). In grid based models, T; (B;) is the net number for the terminal at the
top (bottom) of the ith column, or is O if the terminal does not belong to any

298 Chapter 9. Detailed Routing

Terminals

Upper boundry /\\
Lower boundry \/

Trunks

Figure 9.5: Terminology for channel routing problems.

net. In gridless model, each terminal, T; (B;), indicates the net number to
which the ith terminal. The Left (Right) Connection list, consist of nets that
enter the channel from the left (right) end of the channel. It is an ordered list
if the channel to the left (right) of the given channel has already been routed.

Given the above specifications, the problem is to find the interconnections
of all the nets in the channel including the connection sets so that the channel
uses minimum possible area. A solution to a channel routing problem is a set
of horizontal and vertical segments for each net. This set of segments must
make all terminals of the net electrically equivalent. In the grid based model,
the solution specifies the channel height in terms of the total number of tracks
required for routing. In gridless models, the channel height is specified in terms
of A.

The main objective of the channel routing is to minimize the channel height.
Additional objectives functions, such as, minimizing the total number of vias
used in a multilayer routing solution, and minimizing the length of any partic-
ular net are also used. In practical designs, each channel is assigned a height
by the floorplanner and the channel router’s task is to complete the routing
within the assigned height. If channel router cannot complete the routing in
the assigned height, channel has to expand, which changes the floorplan. This
requires routing the channels in a predefined order, so that such expansions
can be accommodated, without major impact on the floorplan.

In grid based models, the channel routing problem is essentially assignment
of horizontal segments of nets to tracks. Vertical segments are used to connect
horizontal segments of the same net in different tracks and to connect the ter-
minals to the horizontal segments. In gridless models, the problem is somewhat
similar except the assignment of horizontal segments is to specific locations in
the channel rather than tracks. There are two key constraints which must be
satisfied while assigning the horizontal and vertical segments.

1. Horizontal Constraints: There is a horizontal constraint between two
nets if the trunks of these two nets overlap each other when placed on the

9.1. Problem Formulation 299

1 5 2 0 2 1 1 0 3 40

301 2 5 3 400 2 3
(a)
1
5
2
4
3
(b)

Figure 9.6: A routing problem and its HCG.

same track. For a net NV;, the interval spanned by the net, denoted by I;
is defined by (r;, l;), where r; is the right most terminal of the net and
l; is the leftmost terminal of the net. Given a channel routing problem,
a horizontal constraint graph (HCG) is a undirected graph Gy, = (V, E})
where

V = {u;|v; represents I; corresponding to N;}

Ep = {(vi,v5)| I; and I; have non-empty intersection}

Note that HCG is in fact an interval graph as defined in chapter 3. Fig-
ure 9.6(a) shows a channel routing problem and the associated horizontal
constraint graph is shown in Figure 9.6(b).

The HCG plays a major role in determining the channel height. In a grid
based two-layer model, no two nets which have a horizontal constraint
maybe assigned to the same track. As a result, the maximum clique in
HCG forms a lower bound for channel height. In the two-layer gridless
model, the summation of widths of nets involved in the maximum clique
determine the lower bound.

2. Vertical Constraints: A net NV;, in a grid based model, has a vertical
constraint with net IV; if there exists a column such that the top terminal
of the column belongs to N; and the bottom terminal belongs to N; and
t # 7. In case of the gridless model, the definition of vertical constraint is

300 Chapter 9. Detailed Routing

1 5 2 0 2 1 1 0 3 4 0

3 01 2 5 3 4 00 2 3

(a)

(b)

Figure 9.7: A simple routing problem and its VCG.

somewhat similar except that the overlap is between the actual vertical
segments rather than terminals in a column. Given a channel routing
problem, a vertical constraint graph (VCG) is a directed graph G, =
(V, E,), where,

E, = {(vi,v;)|N; has vertical constraint with N;}

It is easy to see that a vertical constraint, implies a horizontal constraint,
however, the converse is not true. Figure 9.7(b) shows the vertical con-
straint graph for the channel routing problem in Figure 9.7(a).

Consider the effect of a directed path in the vertical constraint graph on
the channel height. If doglegs are not allowed then the length of the longest
path in VCG forms a lower bound on the channel height in the grid based
model. This is due to the fact that no two nets in a directed path may be
routed on the same track. Note that if VCG is not acyclic than some nets must
be doglegged. Figure 9.8(a) shows a channel routing problem with a vertical
constraint cycle while Figure 9.8(b) shows how a dogleg can be used to break a
vertical constraint cycle. Figure 9.8(c) shows vertical constraint cycle involving
four nets. In Figure 9.8(d), we show one possible routing for the example in
Figure 9.8(c).

The two constraint graphs can be combined to form a mixed graph called
the Combined Constraint Graph (CCG) which has the same vertex set as the

9.1. Problem Formulation 301

1 2 1 2
L
\\ /’
.\ ’
5\ ,
Y rd
\(’
1’ by
L
/’ \\
’ LY
e ®
2 1 2 1
() (b)
4 1 2 3
_‘.‘—‘. ’ ’ ,'
~ ’ 4)
o ’ , #
~¢ ’ ’
LAl ’ ’
’ ~ ’ ’
’ - ’ ’
’ S ’
’ I~ ’
’ ’ -~ o
’ ’ ~
’ ’ L
’ ! kS
!! f! ¥ s
/ Fd ," s
’ ’ ’, i 0
—& L 4 & 2 2
1 2 3 4

(d)

Figure 9.8: A cyclic vertical constraint.

HCG and VCG while the edge set is the union of Ey and E,. The combined
constraint graph for Figure 9.6(a) is shown in Figure 9.9.

Two interesting graphs related to channel routing problem are the permu-
tation graph and the circle graph. The permutation graph can only be defined
for channel routing problem for two terminal nets and no net has both of its
terminal on one boundary (see Chapter 3). These graphs allow us to consider
the channel routing problem as a graph theoretic problem.

Note that, we do not address the channel routing problem with pins in the
middle of the channel in this book. This problem is largely a research topic
and it is currently solved by using area routers.

302 Chapter 9. Detailed Routing

3

Figure 9.9: A combined constraint graph.

9.1.4 Switchbox Routing Problems

Switchbox routing problem is a generalization of the channel routing prob-
lem, where terminals are located on all four sides. Switchboxes are formed
in two ways. There maybe be a four sided enclosed region within which the
routing must be completed or a four sided region maybe formed due to the
intersection of two channels. A switchbox is formally defined as a rectangular
region R (h x w) where h and w are positive integers. Each pair (3,7) in R is a
grid point. The ith column and jth row or track are the sets of grid points. The
Oth and hth columns are the LEFT and RIGHT boundaries respectively. Sim-
ilarly, the Oth and wth rows are TOP and BOTTOM boundaries respectively.
The connectivity and location of each terminal are represented as LEFT(¢) =
k, RIGHT(:) = k, TOP(i) = k, or BOTTOM(:) = k depending upon the side
of the switchbox it lies on, where 7 stands for the coordinate of the terminal
along the edge and & is a positive integer specifying the net to which the ith
terminal belongs to.

Since it is assumed that the terminals are fixed on the boundaries, the
routing area in a switchbox is fixed. Therefore, the objective of switchbox
routing is not to minimize the routing area but to complete the routing within
the routing area. In other words, the switchbox routing problem is a routability
problem, i.e., to decide the existence of a routing solution. Unlike the channel
routing problem, switchbox routing problem is typically represented by its circle
graph (see Chapter 3).

Note that we do not address the 3D-switchbox routing in this book. This
problem is solved by using area routing approaches. Some concepts and algo-
rithms related to 3D-switchbox and OTC routing will be discussed in Chapter 8.

9.1.5 Design Style Specific Detailed Routing Problems

In this section, we discuss the detailed routing problem with respect to dif-
ferent design styles.

9.2. Classification of Routing Algorithms 303

1. Full custom: The full custom design has both channels and switchboxes.
As explained earlier, depending on the design, the order in which the
channels and 2D-switchboxes are routed is important. A 3D-switchbox
can only be routed after all the channels and 2D-switches under it have
been routed. The objective of a detailed routing algorithm is to complete
the routing in a manner that each net meets it timing constraint and
minimum area is utilized for routing. Other constraints such as manu-
facturability, reliability and performance constraints are also used.

2. Standard cells: The standard cell design style has channels of uniform
lengths which are interleaved with cell rows. Hence the detailed routing
problem is reduced to routing channels. Unlike in the full-custom design,
the order in which the channels are routed is not important. This is
possible since global router assigns pins in the feedthroughs. Typically,
regions on top of cells can be used for 3D-switchbox routing. This will
be explained in more detail in Chapter 8. The objective is to route all
the nets in the channel so that the height of the channel is minimized.
Additional constraints such as minimizing the length of the longest net
and restricting length of critical nets within some prespecified limits are
used for high performance standard cell designs.

3. Gate arrays: The gate arrays have channels of fixed size and hence the
detailed routing algorithms have to route all the nets within the available
routing regions. If the detailed router cannot route all the nets, the
partitioning process may have to be repeated till the detailed routers can
route all the nets. For high performance routing net length constraints
must added.

9.2 Classification of Routing Algorithms

There could be many possible ways for classifying the detailed routing algo-
rithms. The algorithms could be classified on the basis of the routing models
used. Some routing algorithms use grid based models while some other algo-
rithms use the gridless model. The gridless model is more flexible as all the
wires in a design need not have the same widths. Another possible classifica-
tion scheme could be to classify the algorithms based on the strategy they use.
Thus we could have greedy routers, hierarchical routers, etc. to name a few.
We classify the algorithms based on the number of layers used for routing. Sin-
gle layer routing problems frequently appear as sub-problems in other routing
problems which deal with more than one layers. Two and three layer routing
problems have been thoroughly investigated. Recently, due to improvements
in the fabrication process, fourth and fifth metal layers have also been allowed
but this process is expensive compared to three-layer metal process. Several
multi-layer routing algorithms have also been developed recently, which can be
used for routing MCMs which have up to 32 layers.

304 Chapter 9. Detailed Routing

Figure 9.10: Single layer routing problem.

9.3 Single-Layer Routing Algorithms

A general single-layer routing problem can be stated as follows. Given
a routing region, a netlist NV = { Ny, Na, ..., N, }, a set of terminals
{Tiji=1,...,n,j =1,...,n;}where, T;; specifies thejth terminal of net N;,
a set of blocks B = {By,Ba,..., B, Biy1,Bi+2,.-.,Bm}, where By, Bs,..., B,
are flippable and By41,Bite,..., Mn are not flippable (a block is flippable if
orientation of its terminals is not determined). Also given is a set of design
rule parameters which specify the necessary widths of wire segments and the
minimum spacing between wires. The single-layer routing problem is to find a
set of wire segments inside the routing region which complete the connections
required by the netlist without violating any design rule. Figure 9.10 shows
an instance of a single-layer routing problem. Figure 9.10(a) gives the global
routing of the instance of the problem and Figure 9.10(b) gives the detailed
routing of wires on a single layer.

Although the general single layer routing problem is conceptually easier
than the multi-layer routing problem, it is still computationally hard. In single-
layer routing, the fundamental problem is to determine whether all the nets can
be routed. This problem is called single-layer routability problem and is known
to be NP-complete [Ric84]. Figure 9.11 shows an instance of a single-layer
routing problem that is unroutable.

There are many practical restricted versions of the single-layer routing
problem which are easier to handle than the general single-layer routing prob-
lem [MST83]. For example, consider the following:

1. There are no flippable blocks, i.e., [= 0.
2. All the blocks are flippable, i.e., m = .

3. All the nets are two-terminal nets with no flippable blocks.

9.3. Single-Layer Routing Algorithms 305

Figure 9.11: A unroutable single layer example.

4. All the nets are two-terminals nets with all flippable blocks.

5. There are no blocks inside the routing region and all nets are two-terminal
nets.

6. There are no blocks inside the routing region, the nets are two-terminal
and the terminals lie on a single row.

Problems 3, 4, and 5 are commonly known as the variations of river routing.
Problem 6 is known as single row routing problem.

Several special cases of the single layer routing problem can be solved in
polynomial time [BP83, DKS*87, LP83, Mal90, SD81, Tom81].

Although, single layer routing problem appears restricted when one consid-
ers that fabrication technology allows three layers for routing. However, single
layer routing still can be used for power and ground routing, bus routing, over-
the-cell routing and some clock routing problems. During floorplanning, the
sequence of the input and output busses is determined for each block. Since a
bus may have a very large number of nets, it is advisable to pre-route the buses.
Buses are routed such that the output bus of a block is in the same sequence as
that of the input bus of a receiving block. Since the input and output busses
of the blocks have the same sequence, it may be possible to make the intercon-
nections between blocks on a single layer. This also minimizes vias and area
required for bus routing. Power and ground nets are sometimes also routed in
a single layer due to electrical considerations. The power and ground routing
problems will be considered in Chapter 9. In the three layer environment, in
certain regions, the two underlying metal layers may be blocked and only the
top layer is available for routing. In this case, additional nets may be routed
using single layer techniques on the third layer. This is a typical situation in
over the cell routing. We will discuss over-the-cell routing in Chapter 8. Fi-
nally, for high performance circuits, clock nets may be routed in a single layer,

306 Chapter 9. Detailed Routing

2 3
3 4 5
1
[13
12
L L *—
4 5 6

Figure 9.12: An example of the general river routing problem.

as electrical effects of vias are undesirable due to performance considerations.
In this section, we discuss two special cases of single layer routing problem, the
river routing problem and the single row routing problem.

9.3.1 General River Routing Problem

River routing is a special case of the single layer routing under following
assumptions. All the terminals lie on the boundary of the region. Every net
consists of exactly two terminals and there are no blocks in the region. Termi-
nals are located in such a way that no crossover between nets is necessary for
a solution to exist, that is, nets are planar. Figure 9.12 shows an example of a
general river routing problem.

A special case of general river routing problem, which has attracted a lot
of attention is simply called the river routing problem [Hsu83a, JP89, LP83,
MSTS83, THO0]. It is essentially a single layer channel routing problem for
two terminal nets, such that each net has one terminal on each boundary.
Figure 9.13 shows an example of a river routing problem. We will concentrate
on the general river routing problem and present an algorithm for an arbitrary
shaped rectilinear routing region.

9.3.1.1 General River Routing Algorithm

In this section, we discuss the general river routing algorithm presented by
Hsu [Hsu83a]. This algorithm is capable of routing in arbitrary shaped recti-
linear routing regions and guarantees that a solution will be found if one exists.
The algorithm is gridless and allows arbitrary net widths and wire separations.
Although, the algorithm is developed for two terminal nets, it can be easily
extended for multi-terminal nets. We start by defining some terminology.

Let a path be a alternating sequence of horizontal and vertical segments
connecting two terminals of a net. A terminal is called starting terminal if it
is connected to the first segment of a path. Similarly, the terminal connected

9.3. Single-Layer Routing Algorithms 307

1 2 3 4 5 6
4 *— @ \ —
—& o *—& @
1 2 3 4 5 6

Figure 9.13: A simple river routing problem.

P2
Tl
Pl

T2

Figure 9.14: Two possible paths of a net along the boundary.

with the last segment is called an ending terminal. Without loss of generality,
it will be assumed that every path is counter-clockwise along the boundary.
Every net has two possible paths along the boundary and therefore there are
the two possible choices of starting terminal for the net. Figure 9.14 shows two
possible paths along the boundary for a net N; = T1,T,. Path Py has T} as
its starting terminal and path P has T3 as its starting terminal. The general
river routing algorithm routes one net at a time and consists of four phases.
In the first phase, the starting terminal of each net is determined. In the next
phase, net order is determined by the sequence of terminals on the boundaries.
Based on the net order, path searching is done by routing each net, in order, as
close to the boundaries as possible. Unnecessary corners are then removed by
flipping the corners in the last phase. We will now briefly discuss these phases.

Starting Terminal Assignment: As stated earlier, each net has two pos-
sible paths along the boundary. The starting terminal for a net is chosen
independent of all other nets, such that the shorter path is selected. In order
to select a starting terminal for a net, the length of the path in the counter-
clockwise direction is computed and compared to the half of the total length
of the boundary of the routing region. In figure 9.14, terminal T;; is assigned
to be the starting terminal, since path P is shorter than path P,. Figure 9.16

308 Chapter 9. Detailed Routing

shows an example of the starting terminal assignment for a netlist.

Net Ordering: Every path is counter-clockwise and begins at the starting
terminal, as a result, the order in which the nets are routed is very important.
A net can only be routed after all the nets ‘contained’ by the net are already
routed. A net N; is contained by another net Nj, if all the terminals of N;
are on the boundary between the starting and ending terminals of the net Nj.
Note that only the counter-clockwise boundary is considered.

To determine the net order, a circular list of all terminals ordered in counter-
clockwise direction according to their positions on the boundaries is generated.
A planarity check is performed to determine if the given instance is routable.
If the given instance is routable, the nets are ordered by NET-ORDERING
algorithm as given below. The basic idea is to just push the starting terminal
of the nets on the stack as they are encountered. A number is assigned to a
net N;, when the algorithm encounters the ending terminal of net N; and the
top item on the stack is the starting terminal of net N;. This ensures that all
the nets contained in net N; are assigned a number, before assigning a number
to net V;. Net NV; is then deleted from further consideration and algorithm
continues until all nets have been numbered. The formal description of the
algorithm appears in Figure 9.15.

Consider the example shown in Figure 9.16. Starting at terminal 1, termi-
nals are considered in counter-clockwise order. The net Ny is assigned first, as
its ending terminal is encountered, while the top of the stack has the starting
terminal of ;. The starting terminal of N, is pushed onto the stack, followed
by pushing of starting terminal of net N3. The net N3 is number second as its
ending terminal is encountered next. The final net ordering for the example in
Figure 9.16 is {1,3,8,7,6,5,2,4}. The ‘s’ next to a terminal indicates that the
terminal is a starting terminal.

Path Searching: Based on the net order, each net is routed as close to the
pseudo-boundary as possible. For the first net, the pseudo-boundary is the
boundary of the region. For the second net, the segments of the first net and
the segments of the boundary not covered by the first net form the pseudo-
boundary. In other words, each time a net is routed, the region available for
routing is modified and the boundary of this region is referred to as pseudo-
boundary. The path of the net is checked for design rule violations by checking
the distances between the counter-clockwise path of the net and the pseudo-
boundary not covered by the net. If a violation occurs, it implies that the given
problem is unroutable. Figure 9.17 shows the pseudo-boundary ‘abcdihgf” for
net /V; and the path is created by routing as close to ‘abcd’ as possible. The
path is then checked against the remaining segments of the pseudo-boundary,
i.e., ‘ihgf’ for design rule violations.

Corner Minimization: Once the path searching for all nets has been
completed without design rule violation, a feasible solution has been found.
However, the routing technique described above pushes all the paths outward

9.3. Single-Layer Routing Algorithms 309

Algorithm NET-ORDERING
begin
fori=1to 2n do
if END-TERMINAL(T}) then
MATCHED(T;) = 0;
else
MARKED(T;) = 0;
stack = ¢;
ge=1
T = any terminal in the circular list;
while i < n do
if START-TERMINAL(T) and MARKED(T) =0
then PUSH(T, stack);
MARKED(T) = 1;
else if END-TERMINAL(T) and MATCHED(T) =0
then T'1 = POP(stack);
if T =T1 then
MATCHED(T) = 1;
ASSIGN-NUMBER(i, NET(T));
1=i+1;
else exit;
T = next terminal in the circular list;
end.

Figure 9.15: Algorithm NET-ORDERING

5(s)

1(s)

2 3 4(s) 6(s) 7(s)

Figure 9.16: The assignment of starting terminals

310 Chapter 9. Detailed Routing

Figure 9.17: Pseudo-boundary and path creation.

2(s) 8(s)

1(s)
7(s)

6(s)

236s) 3 4 5(s)

Figure 9.18: A boundary-packed solution after path searching,.

against the boundaries and the excess space is left vacant in the center of the
routing region. Figure 9.18 shows an example of the routing after path search-
ing.

The corner minimization is a systematic method of flipping corners toward
the inside of the routing region. Corners are minimized one net at a time.
The order of the nets for this operation is precisely the reverse of the order
determined by the previous net ordering step. That is, the corners of the paths
are minimized starting with nets from the center of the routing region towards
the boundary of the routing region.

Every corner of a path belongs to one of the eight possible cases as shown
in Figure 9.19. Since every path is routed in the counter-clockwise direction, in
four cases the corners can be flipped towards the inside of the routing region.
Figure 9.19 shows the four cases a, b, ¢, d which can be respectively transformed

9.3. Single-Layer Routing Algorithms 311

(e) 0] (& (h)

Figure 9.19: Eight possible cases of a corner.

1 1

i U

1 .

Figure 9.20: Length minimization by flipping corners.

to cases e, f, g, h by flipping towards the inside. The inside of the region is
indicated by a filled dot. A pseudo-boundary is generated in the same way as
in the path searching step and design violation checks are performed before all
corner flips. If the intended corner flip does not create any design rule violation,
the corner is flipped and two corners are eliminated from the path. Otherwise,
this corner is skipped and the next corner of the path is checked. Figure 9.20
shows an example of a path before and after flipping of corners.

9.3.2 Single Row Routing Problem

Given a set of two-terminal or multi-terminal nets defined on a set of evenly
spaced terminals on a real line, called the node axis, the single row routing
problem (SRRP) is to realize the interconnection of the nets by means of non-
crossing paths. Each path consists of horizontal and vertical line segments on
a single layer, so that no two paths cross each other. Moreover, no path is
allowed to intersect a vertical line more than once, i.e., backward moves of nets

312 Chapter 9. Detailed Routing

Upper Street Capacity

Upper Street Congestion

AreRiwe cls o

Lower Street Congestion

|

Node Axis
Lower Street Capacity

Figure 9.21: Basic terminology and a single row realization of the net list L;.

are not allowed.

For an example consider the net list ' = {Ny, N2,...,Ng} where Ny =
{1,5}, N2 = {2,6}, N3 = {4,14}, Ny = {3,7}, N5 = {8,11}, Ng = {9,15}, N,
= {10, 12}, Ng = {13,16}. A single row realization of A" is shown in Figure 9.21.

The area above the node axis is called the upper street while the area be-
low the node axis is called the lower street. The number of horizontal tracks
available for routing in the upper street is called upper street capacity. Simi-
larly the number of horizontal tracks available in the lower street is called the
lower street capacity. Due to symmetry in single row routing, the upper street
capacity is usually equal to the lower street capacity. For a given realization,
the number of the horizontal tracks needed in the upper street is called the
upper street congestion (Cys) and the number of horizontal tracks needed in
the lower street is called the lower street congestion (Cis). The term dogleg is
used to describe a bend in a net, when it makes an interstreet crossing. The
between-nodes congestion Cp of a realization is the maximum number of inter-
street crossings between a pair of adjacent terminals. For the realization shown
in Figure 9.21, Cys = 2,Cj, = 2,Cp = 1. The net N; is doglegged once, while
the net N3 is doglegged twice.

The objective function considered most often is to minimize the maxi-
mum of upper and lower street congestions, i.e., minimize Qq, where Qo =
max{Clys, Cis}. To minimize the separation between the two adjacent termi-
nals it is sometimes necessary to minimize Cg. In practical problems, @y < 3
and Cp £ 2. Other objective functions include minimizing the total number
of doglegs in a realization or to minimize number of doglegs in a wire.

9.3.2.1 Origin of Single Row Routing

The SRRP was introduced by So in the layout design of multilayer circuit
boards [So74]. It has received considerable attention [HS84a, KKF79, RS83,
RS84, TKS76, TMSKS84, TKS82]. So proposed a systematic approach to the
routing of large multi-layer printed circuit board problem(MPCBP). This ap-

9.3. Single-Layer Routing Algorithms 313

proach consists of a well defined decomposition of the MPCBP into several
independent single layer single row routing problems. The scheme decomposes
the MPCBP routing problem into five phases:

1. via assignment,

2. placement of via columns,
3. layering,

4. single row routing, and

5. via elimination,

In the via assignment phase, each multi-terminal net is decomposed into
several two terminal nets. A net whose terminals lies on the same row or
same column is connected by a wire. A net is not directly decomposable if
it contains two terminals not in the same row or same column. In this case
vias are introduced to facilitate decomposition of the net. In the second phase
of decomposition the via columns are permuted to minimize the wire lengths.
Obviously this change is meaningful only if vias appear column-wise. In par-
ticular, in this step, the locations of two via columns are exchanged without
violating any of the net connections.

In the third phase of decomposition, a single row routing problem is decom-
posed into several single row routing problems so that each subproblem can be
routed to satisfy the upper and lower street constraints in a different layer.
Usually, half the available layers are used for realization of the row problems,
and the other half of the available layers is used for the column problems.

Sufficient conditions for a realization with minimum congestion along with
a routing algorithm were presented by Ting, Kuh, and Shirakawa [TKS76].
It was shown that an arbitrary set of nets can be realized if upper and lower
street capacities are unbounded. Kuh, Kashiwabara, and Fujisawa [KKF79],
presented an interval diagram representation of the single row routing problem.
This representation played an important role in the research and development
of several algorithms for the single row routing problem. The interval diagram
representation of an example is given in Figure 9.22. The broken line shown in
Figure 9.22(b) is called the reference line. The layout is obtained by stretching
out the reference line and setting it on top of the node axis. The interval
lines for each net are mapped topologically onto vertical and horizontal paths.
The nets and its segments above the reference line are mapped onto paths in
the upper street, while the nets and its segments below the reference line are
mapped onto paths in the lower street. This process defines a unique realization
as shown in Figure 9.22(c). An important implication of the interval diagram
representation is that it reduces the single row routing problem to finding an
optimal permutation of nets and thus greatly enhances the understanding of
the problem.

Kuh, Kashiwabara, and Fujisawa [KKF79] also proposed an algorithm for
minimizing street congestion. It was based on the number of possible orderings

314 Chapter 9. Detailed Routing

NS
N,
N,
Ny
Ny
(a)
N, N,
- “ " ——— \“ /‘ \\
N ,/ N2 ‘\. ,’/Nd v
‘\‘ . === . . S
“‘ // NS \\\ ;"
(b)
e T
2 3 L L 6 7
1 Y’ 4 5 T- T 8 o
N N
Ny

Figure 9.22: Interval diagram representation

(permutations) of nets that can be considered for routing. Another important
contribution of Kuh, Kashiwabara, and Fujisawa [KKF79] is the development of
necessary and sufficient conditions for the optimal realization of the single row
routing problem. These conditions were based on the idea of the cut number
of a net. The cut number of a terminal is the number of nets passing over that
terminal. The cut number of a net is maximum among all cut numbers of its
terminals. Example in Figure 9.23 shows the concept of cut number. Let g¢; be
the cut number of net N;. Then in the Figure 9.23, ¢; = 2, ¢2 = 3, ¢3 = 4,
g4 =3, qgs =4, and gs = 2. Let gmax and gmin be the maximum and minimum
over the cut numbers of all nets, respectively. Then in the Figure 9.23, gmax = 4
and gmin = 2.

The main idea behind the necessary and sufficient condition is the optimal
partitioning of nets at each terminal. A realization is optimal with congestion
equal to ¢; = 9‘“5“ if at each terminal with cut number ¢ there are at least
k = ¢ — ¢ nets above and & nets passing below that terminal, not counting the
net to which the terminal belongs. In other words, if ¢ nets cover a terminal,
then a realization with congestion equal to g; is optimal only if the nets covering
this terminal can be partitioned into two sets, each containing at least k nets.

9.3. Single-Layer Routing Algorithms 315

0 ™ 2
1 N2 3
2 % 4 2 Ns 0
4 M 1
3 N 2

Figure 9.23: The concept of cut numbers.

Although this condition can be used to verify whether a given realization is
optimal, it does not lead to any optimal routing algorithm. In fact there is
strong evidence that no such algorithm may exist. Arnold [Arn82] proved that
the problem of finding a layout with minimum congestion is NP-Hard.

Based on the concept of cut-numbers, a lower bound is also presented
in [KKF79].

Theorem 9 For any feasible realization Qo > max{gmin, [4521}

In [TMSK84] Trang, Marek-Sadowska, and Kuh proposed a heuristic algo-
rithm for minimizing street congestion. The proposed algorithm is based on
permuting the nets according to their cut number. It is observed that nets
having larger cut numbers should be placed inside, i.e., near the middle of the
permutation, while nets having lower cut numbers should be placed outside,
i.e., at the ends of the permutation. In [DL87b] Du and Liu showed that the
algorithm in [TMSKS84] does indeed produce optimal results if all the nets be-
long to one ‘group’. However, if the net list has more than one group than
the algorithm given in [TMSK84] may not produce optimal results. The set of
nets that covers at least one common node is said to form a group. Du and Liu
proposed an algorithm that takes the group structure into account. They use
the idea of local cut number that is, the cut number of a net with respect to
a group. The algorithm routes the largest group first and then tries to route
the nets in the adjacent group while trying to satisfy the heuristic criterion of
placing nets with larger local cut numbers inside and nets with smaller local cut
numbers outside. This algorithm produced better results than the one reported
in [TMSK84].

In [DIN87] Du et al. investigated the problem of minimizing the between-
node congestion which is the congestion between two adjacent nodes. They
developed a fast algorithm for the case when the number of horizontal tracks
available as well as the number of vertical tracks available between adjacent
nodes is fixed. Their algorithm is an extension of Han and Sahni’s algorithm.

316 Chapter 9. Detailed Routing

9.3.2.2 A Graph Theoretic Approach

In [SD89a, SD89b, SDR89, SDRI0], Sherwani and Deogun developed a new
graph-theoretic approach to single row routing problems. This approach models
a single row routing problem with three graphs, an overlap graph, a contain-
ment graph and an interval graph. It was found that several relationships exist
between the properties of an SRRP and the graph representation. In [SD89a],
a new heuristic algorithm has been developed based on this approach. This
algorithm achieves substantially better results than the existing algorithms.
In [SD89b], new lower bounds for SRRP have been developed and in [SDR89]
the problem of single row routing with a restricted number of doglegs is inves-
tigated.

We will briefly discuss the principle results obtained by the graph theoretic
approach. Let R be a set of evenly spaced terminals on the node axis. Let
N = {Ny,Ny,...,N,} be a set of two-terminal nets defined on R. Each net
N; can be uniquely specified by two distinct terminals /; and r; called the left
touch point and the right touch point, respectively, of IV;. Abstractly, a net
can be considered as an interval bounded by left and right touch points. Thus
for a given set of nets, an interval diagram depicting each net as an interval can
be easily constructed. Given an interval diagram corresponding to an SRRP,
we can define an interval graph G1 containment graph G¢ and overlap graph
Go. The definitions of these graphs may be found in chapter 3.

The approach presented in [SD89a] uses modified cut numbers. The cut
number is a very important criterion in determining the position of a net in
the final routing. Usually only cliques are considered in computation of cut-
numbers. For improving the utility of cut-numbers, they consider not only
cliques but also the clique intersections. Two cliques are said to have high
clique intersection if the number of nets they have in common is at least equal
to one-half of the maximum size of the two cliques, otherwise cliques have
low clique intersection. If the clique intersection is relatively high between
two cliques, these cliques are collapsed to form a bigger pseudo-clique. For
routing purposes a pseudo-clique is treated as a clique. This operations of
clique collapsing continues until all clique intersections are relatively low. The
cut-number of a net with respect to its pseudo-clique is called the modified
cut-number. It is easy to see that this approach behaves like Trang et al.’s
algorithm if all clique intersections are high while behaving like Du et al.’s
algorithm if all clique intersections are low. In addition, it even produces a
good solution for problem sets for which some clique intersections are high and
some clique intersections are low.

9.3.2.3 Algorithm for Street Congestion Minimization

In [SD89a], an algorithm to minimize the street congestion was developed.
The basic function of the algorithm, denoted as SRRP_ROUTE, is to find
maximal pseudo-cliques in the interval graph G representing the sub-problem
under consideration. This goal is accomplished by finding and collapsing maxi-
mal cliques. If the clique intersection of the two neighboring (pseudo-)cliques is

9.3. Single-Layer Routing Algorithms 317

Algorithm SRRP-ROUTE ()
begin
FIND-CLIQUES (L, C)
COMBINE-CLIQUES (L, C, D)

(* D contains super-cliques SCj,j = 1,...,7 *)
MAX-PSEUDO-CLIQUE (D, SCy)
SOLVE (SCx, M)
forj=1tok—-1

INSERT (SC;)
forj=k+1tor

INSERT (SCj)

end.

Figure 9.24: Algorithm SRRP-ROUTE

high then these are combined and a pseudo-clique is formed. All modified cut-
numbers are computed according to the pseudo-cliques. First, the maximum
pseudo-clique SCy is routed using a greedy approach similar to the approach
used in [TMSK84]. Other pseudo-cliques to the left and right of this maximum
pseudo-clique are then routed. An outline of the algorithm is in Figure 9.24.

In the following, we give a brief description of the main procedures of SRRP-
ROUTE:

Procedure FIND-CLIQUES: This procedure decomposes the given
problem into several smaller single-row-routing problems by identifying
the linear ordering of cliques C;,1 < ¢ < n of the interval graph Gy.

Procedure COMBINE-CLIQUES: This procedure finds the clique
intersections between adjacent cliques, and forms a pseudo-clique if the
clique intersection is high. This process is catrried out until all clique
intersections between all pseudo cliques are low. The clique collapsing
parameter can be changed.

Procedure SOLVE: This procedure returns a permutation of the nets
of a sub-problem obtained by placing them according to the greedy heuris-
tic based on the modified cut numbers. This procedure is used to route
the maximum pseudo-clique.

Procedure INSERT: This procedure combines solutions of two adja-
cent sub-problems to produce a solution for the larger problem defined
by the combination of the two sub-problems. It inserts the new nets
belonging to the new clique into the existing solution so that nets with
higher modified cut numbers are assigned to inner tracks, while nets lower
modified cut numbers are assigned to outer tracks.

318 Chapter 9. Detailed Routing

The number of nets in any sub-problem cannot be greater than n. Moreover,
procedure SOLVE has a time complexity of O(nlogn). Procedure INSERT
has a time complexity of O(n). The first loop thus takes O(n?logn) time.
Similarly, the second loop also takes O(n?logn). Therefore, the worst case
time complexity of the algorithm is O(n?logn).

9.3.2.4 Algorithm for Minimizing Doglegs

The problem of finding a layout without doglegs is of interest because of the
limited amount of inter-pin distance available in IC’s. This problem has been
considered before by Raghavan et al., [RS84] when an algorithm for checking
feasibility of routing without doglegs was developed. The authors however
did not present a characterization. Using the graph model, in [SD89a] a
characterization of single row routing problems which can be solved without
doglegs is presented.

Theorem 10 An SRRP can be routed without any doglegs if and only if the
corresponding overlap graph is bipartite.

Similarly, a sufficient condition for routing with at most one dogleg per net
was also established.

Theorem 11 An SRRP can be realized with at most one dogleg per net if the
corresponding containment graph Gg is null.

Using this graph representation, three algorithms for minimum-bend single
row routing problem have recently been reported [SWS92]. It was shown that
the proposed algorithms have very tight performance bounds. In particular, it
is proved that the maximum number of doglegs per net is bounded by O(k),
where k is the size of the maximum clique in certain graph representing the
problem. Expected value of & is ©(y/n) and in practical examples & = 0(1),
where n is the number of nets.

We will briefly describe one of the algorithms, which is based on the decom-
position of the given SRRP into several smaller SRRPs so that interval graph
for each subproblem is null. This operation is called independent set decomposi-
tion of Gy. The motivation for this algorithm is derived from the fact that using
the interval graph representing a SRRP, the problem can be decomposed into
k subproblems and each one of these subproblems can be routed without any
doglegs. The key therefore, is to combine the routing of these subproblems such
that maximum number of doglegs per net is minimized. The independent set
decomposition of Gy can be achieved by using the algorithm to find maximum
clique in an interval graph described in Chapter 3. Using the & independent
sets, an algorithm, denoted K-DOGLEG-I is presented, which combines the
routing of these sets into a routing for the given SRRP. The formal description
of the algorithm is in Figure 9.25.

Theorem 12 The Algorithm K-DOGLEG-I routes a given net list L with at
most O(k) doglegs per net in O(nlogn) time, where k = Cr and n is the total
number of nets.

9.3. Single-Layer Routing Algorithms

Algorithm K-DOGLEG-I()
begin
Phase 1:
(* Use Left_edge algorithm to decompose N into
k independent net lists *)
(* lists (M}, N2,..., Ni) of N. *)
N;=LEDGE(N); (i = 1,..,k).
(* Assign A to the upper street. *)
for (N;eN, i=1,..,m;) do
Y =T/ UN;;
(* Assign N, to the lower street. *)
for (N; €Ny i=1,..,ms) do
TP =TPUN;
Phase 2:
(* Insert the remaining independent net lists.*)
t=U:u=Lil=1;
for (G} i=3,.,k) do
for (N; e N;(j =1,..,m;)) do
(* Find the smallest track which contains N;. *)
k = min{q|1 < ¢ <p,N; € Tt}
if (N; contained by previously routed net at T})
then
(* Insert N; under T}. *)
INSERT(N;, T%);

else
(* Assign the new net to the outer track. *)
Te=T, |} Ny;

(* Switch street. *)
if(t=U) then
t=B;l=1+1;p=1;
else
t=Usu=u+1;p=1y;
end.

Figure 9.25: Algorithm K-DOGLEG-I

319

320 Chapter 9. Detailed Routing

Proof: Given a net list L, the algorithm decomposes it into & independent net
lists L;,i = 1,...,k, and routes the first independent net list L, on the upper
street and the second independent set L, on the lower street. This operation
can be completed without any doglegs. Then the algorithm inserts all the nets
in the remaining £ — 2 independent net lists into the existing layout. Since
inserting one independent net list causes at most O(1) more doglegs to each
net in the layout, hence inserting all the remaining & — 2 independent net lists
causes at most O(k) more doglegs to each net in the layout. So the total dogleg
number per net is O(k). On the other hand, in an interval graph, k& is equal to
Cy. Therefore, the algorithm K-DOGLEG-I can route a given net list with at
most O(Cr) doglegs per net.

All operations of the K-DOGLEG-I algorithm, except the track finding
operation can be carried out in constant time. Each find operation can be
accomplished by a binary search in O(logn) time. Therefore the total time
complexity is O(nlogn). O

9.4 Two-Layer Channel Routing Algorithms

Two-layer channel routing differs from single-layer routing in that two planar
set of nets can be routed if vias are not allowed, and a non-planar set of nets
can be routed if vias are allowed. For this reason, checking for routability is
unnecessary, as all channel routing problems can be completed in two layers of
routing if vias are allowed. Therefore, the key objective function is to minimize
the height of the channel.

For a given grid-based channel routing problem, any solution to the problem
requires at least a minimum number of tracks. This requirement is called the
lower bound for that problem. Since the lower bound is the minimum number
of tracks that is required, it is unnecessary to reduce the number of tracks
beyond the lower bound and therefore, it is important to calculate the lower
bound of the number of tracks before solving a particular routing instance.
Following theorem presents the lower bounds for channel routing problems
assuming two-layer reserved layer routing models with no doglegs allowed. Let
hmax and vmax represent the maximum clique in the HCG and the longest path
in VCG, respectively for a routing instance.

Theorem 13 The lower bound on the number of tracks of a two-layer dogleg
free routing problem is max{Amax, Umax }-

For grid-less channel routing problems, the width of nets must be taken into
account while computing vmqz and hmge.

9.4.1 C(lassification of Two-Layer Algorithms

One method of classifying two-layer channel routing algorithms would be
to classify them based on the approach the algorithms use. Based on this
classification scheme we have:

9.4. Two-Layer Channel Routing Algorithms 321

1. LEA based algorithms: LEA based algorithms start with sorting the
trunks from left to right and assign the segments to a track so that no
two segments overlap.

2. Constraint Graph based routing algorithms: The constraint based routing
algorithms use the graph theoretic approach to solve the channel rout-
ing problem. The horizontal and vertical constraints are represented by
graphs. The algorithms then apply different techniques on these graphs
to generate the routing in the channel.

3. Greedy routing algorithm: The greedy routing algorithm uses a greedy
strategy to route the nets in the channel. It starts with the leftmost
column and works towards the right end of the channel by routing the
nets one column at a time.

4. Hierarchical routing algorithm: The hierarchical router generates the
routing in the channel by repeatedly bisecting the routing region and
then routing each net within the smaller routing regions to generate the
complete routing.

In the following subsection, we present a few routers from each category.

9.4.2 LEA based Algorithms

The Left-Edge algorithm (LEA), proposed by Hashimoto and Stevens [HS71],
was the first algorithm developed for channel routing. The algorithm was
initially designed to route array-based two-layer PCBs. The chips are placed
in rows and the areas between the rows and underneath the boards are divided
into rectangular channels. The basic LEA has been extended in many different
directions. In this section, we present the basic LEA and some of its important
variants.

9.4.2.1 Basic Left-Edge Algorithm

The basic LEA uses a reserved layer model and is applicable to channel rout-
ing problems which do not allow doglegs and any vertical constraints. Conse-
quently, it does not allow cyclic vertical constraints.

The left-edge algorithm sorts the intervals, formed by the trunks of the
nets, in ascending order, relative to the x coordinate of the left end points of
intervals. It then allocates a track to each of the intervals, considering them one
at a time (following their sorted order) using a greedy method. To allocate an
interval to a track, LEA scans through the tracks from the top to the bottom
and assigns the net to the first track that can accommodate the net. The
allocation process is restricted to one layer since the other layer is used for the
vertical segments (branches) of the nets. The detailed description of LEA is in
Figure 9.26. Figure 9.27 shows a routing produced by LEA. Net N, is assigned
to track 1. Net Vs is assigned to track 2 since it intersects with Ny and cannot
be assigned to track 1. Net N3 is similarly assigned to track 3. Net Ny is

322 Chapter 9. Detailed Routing

Algorithm LEFT-EDGE (N, T)
begin
FORM-INTERVAL(N, I);
FORM-HCG(Z,HCG);
d = DENSITY(HCG);
let T = {T1T3,...,T4} denote the set of routing
tracks from top to bottom;
SORT-INTERVAL(Z);
fori=1ton do
for j =1toddo
if DOES-NOT-OVERLAP(I;,T;) then
assign interval I; to Tj;
fori=1tondo
(* connect the vertical segments of net N; to its *)
(* horizontal segment *)
VERTICAL-SEGMENT (left(1;), left(V;));
VERTICAL-SEGMENT (right(;), right(N;));
end.

Figure 9.26: Algorithm LEFT-EDGE

assigned to track 1 since it does not intersect with N;. The following theorem
which establishes the optimality of LEA is easy to prove.

Theorem 14 Given a two-layer channel routing problem with no vertical con-
straints, LEA produces a routing solution with minimum number of tracks.

The input to the algorithm is a set of two-terminal nets N = {Ny, Na, ...,
Np}. Procedure FORM-INTERVAL forms interval set T = {Iy, I, ..., I,} from
N. Once the intervals are formed, FORM-HCG forms the horizontal constraint
graph HCG from Z. Note that the HCG is a interval graph corresponding
to interval set Z. Procedure DENSITY computes the maximum clique size
in HCG. This maximum clique size is a lower bound on the given channel
routing problem instance. SORT-INTERVAL sorts the intervals in Z in the
ascending order of their z-coordinate on their left edge. Procedure VERTICAL-
SEGMENT connects the vertical segments with the corresponding horizontal
segment. The time complexity of this algorithm is O(n logn}, which is the time
needed for sorting n intervals.

The assumption that no two nets share a common end point is too restric-
tive, and as a result LEA is not a practical router for most channel routing
problems. The restrictions placed on the router in order to achieve optimal re-
sults are not practical for most channel routing problems. However, LEA can
be used to route PCB routing problems with vertical constraints since there is
sufficient space between the adjacent pins to create a jog. LEA is also useful
as a initial router for routing of channels with vertical constraints. The basic

9.4. Two-Layer Channel Routing Algorithms 323

(a) (b)

Figure 9.27: Left-edge channel routing.

idea is to create a layout with design rule violations and then use clean up
procedures to remove the violations.

9.4.2.2 Dogleg Router

One of the drawbacks of LEA is that it places an entire net on a single track.
It has been observed that this leads to routings with more tracks than necessary.
Consider Figure 9.28(a), which shows a simple channel routing problem that
has been routed using LEA and uses three tracks. On the other hand, if a
dogleg is introduced in net Ns, the same problem can be routed using only two
tracks. We recall that a dogleg is a vertical segment that is used to maintain
the connectivity of two trunks (subnets) that are on two different tracks. The
insertion of doglegs, may not necessarily reduce the channel density. A badly
placed dogleg can lead to an increase in channel density. Finding the smallest
number and locations of doglegs to minimize the channel density is shown to
be NP-complete [Szy85].

Deutsch [Deu76] proposed an algorithm known as dogleg routerby observing
that the use of doglegs can reduce channel density. The dogleg router is that
it allows multi-terminal nets and vertical constraints. Multi-terminal nets may
have terminals on both sides of the channel and often form long horizontal
constraint chains. In addition, there are several critical nets, such as clock nets,
which pose problems because of their length and number of terminals. These
type of nets can be broken into a series of two-terminal subnets using doglegs
and each subnet can be routed on a different track. Like LEA, the Dogleg
router uses a reserved layer model. Restricting the doglegs to the terminal
positions reduces the number of unnecessary doglegs and consequently reduces
the number of vias and the capacitance of the nets. The dogleg router cannot
handle cyclic vertical constraints.

The dogleg router introduces two new parameters: range and routing se-
quence. Range is used to determine the number of consecutive two-terminal

324 Chapter 9. Detailed Routing

O0— o
_‘m
m.IHM

T

(a)
¢) 3 2

Figure 9.28: Using a dogleg to reduce channel density.

subnets of the same net which can be placed on the same track. Increasing the
range parameter will result in fewer doglegs. The routing sequence specifies
the starting position and the direction of routing along the channel. Unlike
LEA, the routing can start from any end and work towards the opposite end.
Different results can be obtained by starting at different corners: top-left, top-
right, bottom-left, bottom-right. Furthermore, instead of starting from the top
to the bottom or from the bottom to the top, the algorithm can alternate be-
tween topmost and bottommost tracks. This scheme results in eight different
routing sequences: top-left = bottom-left, top-left — bottom-right, top-right
— bottom-left, top-right = bottom-right, bottom-left — top-left, bottom-left
— top-right, bottom-right — top-left, and bottom-right — top-right. (The left
side of the arrow indicates the starting corner and the right side of the arrow
indicates the alternate corner). Consider the example shown in Figure 9.29(a).
If the range is set to 1 and we set the routing sequence to top-left — bottom-
right, then Figure 9.29(b) shows routing steps in dogleg router. Notice that
nets N2 and N3 use doglegs.

The complexity of the algorithm is dominated by the complexity of LEA. As
a result, the complexity of the algorithm is O(nlogn+nd), where n is the total
number of two-terminal-nets after decomposition and d is the total number of
tracks used. Note that the parameter’s range and routing sequence can be
changed to get different solutions of the same routing problem. A large value
of range keeps the number of doglegs smaller. If the number of two-terminal
subnets of a net is less than the value of a range, then that net is routed
without any dogleg. Varying the routing sequence can also lead to a reduced

9.4. Two-Layer Channel Routing Algorithms 325

01 22 43400

o
4 o
4+
+ &
-+ W
4o
4o

1
-

1 20 3 3 0 4 4

(a) (b)

Figure 9.29: Example routed by dogleg router.

channel height. Dogleg router can easily be extended to gridless routing model.
Experimentally dogleg routers achieve far superior results as compared to LEA,
often requiring very few tracks beyond the channel density.

9.4.2.3 Symbolic Channel Router: YACR2

LEA does not allow vertical constraints thereby making it impractical for
most of the channel routing problems. If a given channel is routed using LEA,
then vertical constraint violations may be introduced by the router which need
to be removed to get a legal routing solution. Note that a vertical constraint
violation is a localized problem and may be resolved by anyone of the two
methods:

1. local rip-up and reroute
2. localized maze routing.

In the second approach, vacant space surrounding the column in which vertical
constraint violation occurred can be used to resolve the violation. Usually
several horizontal segments of tracks as well as several vertical columns are not
used for routing of any nets. Since the general maze routing technique is very
time consuming and vertical constraint violations are local in nature, special
maze routing techniques can used to remove vertical constraint violations. In
case any vertical constraint violations cannot be resolved, new tracks can be
added to resolve the constraints.

Based on these observations, Reed, Sangiovanni-Vincentalli, and Santa-
mauro [RSVS85] proposed YACR2 (Yet Another Channel Router). In order
to explain how vertical constraint violations are handled in YACR2 we de-
fine the concept of vertical overlap factor, which indicates the total number
of tracks that a vertical constraint violation spans. Precisely stated, let us
assume that column ¢; has a vertical constraint violation between net /N, that
has to be connected to the top boundary and net N, that has to be connected

326 Chapter 9. Detailed Routing

to the bottom boundary. Also assume that N; is assigned to track ¢, and Ny
is assigned to track t4. Track t, is above track ¢, and tracks are numbered
in increasing order from top to bottom boundary. Then vertical constraint
vof(c;) = (p — ¢+ 1). For any column ¢;, if there is no vertical constraint
violation in ¢;, then vof(c;) = 0. The basic idea of YACR?2 is to select nets in
an order and assign nets to tracks in a way such that vof(c;) is as minimum
as possible for each column ¢;. After assigning nets to tracks, specialized maze
routing techniques are used to resolve the violations. If a vertical constraint
violation cannot be resolved using maze routing technique, additional tracks
are used to complete the routing.

The algorithm works in four different phases. First three phases are essen-
tially for assigning nets to tracks with the objective of minimizing vof(c;) for
each column ¢;. In attempt to minimize vof(c;), the algorithm starts with the
nets belonging to the maximum density column. After assigning tracks to the
nets belonging to the maximum density column, it uses LEA to assign tracks to
nets that are to the right of the maximum density column and then assigns to
the nets that are to the left of the maximum density column. A modified LEA
is used to assign tracks that are to the left of the maximum density column. It
can be thought of as a right-edge algorithm, since it works from right to left.

As mentioned earlier that the goal of selecting and assigning nets to tracks
is to minimize the total number of vertical constraint violations so that it is
easy for the simplified maze routers to complete the routing. However, it is
impossible to determine all the vertical constraint violations caused by the
placement of a certain net. In fact some of the vertical constraint violations
may occur between the net under consideration and nets yet to be routed.
Since the nets are routed without doglegs, the vertical constraint graph can be
used to estimate the possibility of an assignment giving rise to a violation, and
the difficulty involved in removing the violation if it occurs. The techniques
of selecting and assigning nets used in [RSVS85] are rather complicated and
readers are referred to [RSVS85] for the details. It should be noted that any
technique will work; however, vof may be very high for some column making
vertical constraint violation resolution steps rather complicated.

After track assignments of horizontal segments, at the end of phase III,
has been achieved, appropriate vertical segments are placed in the columns
with vof = 0. In phase IV, the columns with vertical constraint violations
are examined one at a time to search for legal connection between the nets
and their terminals. Instead of applying the general purpose maze routing
technique, three different maze routing techniques are applied to resolve the
vertical constraint violations in this phase. These three techniques (strategies)
are called mazel, maze2, and maze3. At each column with a vertical constraint
violation, mazel strategy is used first. If mazel fails to resolve the violation,
maze? is applied. If maze?2 fails, then maze3 is applied to resolve the violation.
In case all three strategies fail, the channel is enlarged by adding one track and
the process is repeated.

To explain how the maze routing techniques work, let us assume that column
¢; has a vertical constraint violation between net N; that has to be connected to

9.4. Two-Layer Channel Routing Algorithms 327

the top boundary and net N that has to be connected to the bottom boundary.
Also assume that N, is assigned to track ¢, and N; is assigned to track ¢4. Tack
tp is above track tg.

The Mazel technique checks for either one of the following:

1. No vertical segments exist between t,_; and t; on column ¢;_1 or ¢it1-

In this case a jog is used in net Ny in track ¢,_; to resolve the violation
(see Figure 9.30(a) and (b));

2. No vertical segment exist between ¢, and ¢,4, on column ¢;—; or ¢iyi.

In this case ajog is used in net IV in track tq41 to resolve the violation
(see Figure 9.30(c) and (d));

3. No vertical segment exist between ¢,_1 and some ¢,, between ¢, and t,,
on column ¢;_; and between ¢;_; and ¢g4; on column ¢;41, or vice versa.

In this case net INV; uses jogs in tracks t,_; and t, and net N, uses jogs
in tracks ¢;_; and ¢44; to resolve vertical constraint violation (see Fig-
ure 9.30(e) and (f)).

In case mazel technique cannot resolve the vertical constraint violation,
maze2 technique is used in attempt to resolve the violation. Maze2 checks for
one of the following:

1. A track, column pair (¢,,¢;) such that: (a) there are no horizontal seg-
ments in track t, between columns ¢; and ¢;; (b) there are no vertical
segments in ¢; between t, and t4; (c) the horizontal segment of net N, in
track t, either crosses columnc; or can be extended toc¢; without causing
a horizontal constraint violation; and (d) ¢, is above tp.

In this case, net N; uses a dogleg in track t, to resolve the violation as
shown in Figure 9.31(a) and (b).

2. A track, column pair (t,,c;) such that: (a) there are no horizontal seg-
ments in track ¢, between columns ¢; and ¢;; (b) there are no vertical
segments in ¢; between ¢, and tp; (c) the horizontal segment of net N in
track ¢, either crosses columnc; or can be extended toc; without causing
a horizontal constraint violation; and (d) ¢, is below ¢,.

In this case, net Ny, uses a dogleg in track ¢, to resolve the violation as
shown in Figure 9.31(c) and (d).

If none of the conditions in maze2 techniques are satisfied, maze3 technique
is applied. As opposed to the local maze routing, the pattern based approach
of YACR?2 is efficient and avoids long routes; at the same time, it is limited in
scope as opposed to local maze routing techniques. If none of the maze routing
techniques can resolve vertical constraint violations, new tracks are added to
complete the routing.

328 Chapter 9. Detailed Routing

[m |
|
| i
| q
€
(b)
] NEE
ENEEE ’
! u q
]
I | (N
||
l e | [m |
B N,
cl-] Cl C'H-l Ci—l l::i Ci+l
(©)
|
l [
\J
I
l
o &
[
"2 %5 B
(e) (3]
m Via

Metal 1 (vertical segments)
:l Metal 2 (horizontal segments)
(/77 Area where metal 1 passes horizontally under metal 2

Figure 9.30: Mazel routing.

9.4. Two-Layer Channel Routing Algorithms 329

|]
L [) b
— [
= q
fu %1 %m BE 7y i1
(a)
[1* |
L] p
:
| k4 1% |
B
Cln
[=] [
B
e ® oy
(c) (d)

| Metal 1 (vertical segments)

:] Metal 2 (horizontal segments)

Figure 9.31: Maze2 routing.

9.4.3 Constraint Graph based Routing Algorithms

Consider a channel routing problem with no vertical constraints. Obviously,
the number of tracks needed is determined by the maximum clique A,y 4, in the
horizontal constraint graph(HCG). In this case, LEA produces optimal results,
if no doglegs are allowed. In presence of vertical constraints, the length of the
longest path vmax in vertical constraint graph(VCG) also plays a key role in
determining the channel height. In particular, the nets which lie on long paths
in the vertical constraint graph, must be carefully assigned to tracks. In order
to explain the effect of long vertical chains, let us define length of ancestor and
descendent chains of a net N;. Let v; represent N; in VCG. Let A4; denote
the length of the longest path from a vertex of zero in-degree to v; in VCG.
Similarly, let D; denote the length of longest path from »; to a vertex of zero

330 Chapter 9. Detailed Routing

,_
y o
ad
F=N
i
b o

| s B

12 3 5 6 1 2 3 4 5 6
(a) (b)

s —O ¢

Figure 9.32: Effect of net merging on channel height.

out-degree in VCG. It is easy to see that

Umax = max (A; + D;) — 1
i=l,n

Consider the nets N3 and N4 as shown in Figure 9.32. If N3 and Ny are assigned
to the same track then the channel height is given by

ch_ht > max{As + Ay, A3+ Dy, Ay + D3, Ay + D4}

In other words, if we consider N3 and N4 as a new net, then a new vertical
constraint chain is created which consists of longer of two ancestor chains and
longer of two descendent chains.

ch-ht > max{max{As, A4} + max{Ds, D4}}

Figure 9.32(a) shows the effect of assigning two nets to the same track with-
out considering the constraint chains. The channel height for this solution is
equal to 6. A better assignment resulting in a channel height of 4 is shown in
Figure 9.32(b). Based on the above equation, we make the following observa-
tion. In order to minimize the effect of vertical constraint chains on channel
height, two nets may be assigned to the same track only if both of them have
small ancestor chains, or both of them have small descendent chains. Several
algorithms have been developed which are based on this observation. In this
section, we discuss the first constraint graph based algorithm and its grid-less
variant.

9.4.3.1 Net Merge Channel Router

In 1982, Yoshimura and Kuh [YKS82] presented a new channel routing al-
gorithm (YK algorithm) for two-layer channel routing problems based on net
merging. This work was the first attempt to analyze the graph theoretic struc-
ture of the channel routing problem. YK algorithm considers both the horizon-
tal and vertical constraint graphs and assigns tracks to nets so as to minimize
the effect of vertical constraint chains in the vertical constraint graph. It does

9.4. Two-Layer Channel Routing Algorithms 331

not allow doglegs and cannot handle vertical constraint cycles. The YK algo-
rithm partitions the routing channel into a number of regions called zones based
on the horizontal segments of different nets and their constraints. The basic
observation is that a column by column scan of the channel is not necessary as
nets within a zone cannot be merged together and must be routed in a separate
track. This observation improves the efficiency of the algorithm. The algorithm
proceeds from left to right of the channel merges nets from adjacent zones. The
nets that are merged are considered as one composite net and are routed on a
single track. In each zone, new nets are combined with the nets in the previous
zone. After all zones have been considered, the algorithm assigns each com-
posite net to a track. The key steps in the algorithm are zone representation,
net merging to minimize the vertical constraint chains, and track assignment.
Throughout our discussion, we will use the example given in [YKS82], since that
example serves as a benchmark.

1. Zone Representation of Horizontal Segments: Zones are in fact
maximal clique in the interval graph defined by the horizontal segments
of the nets. The interval graph of the net list in Figure 9.33(a) is shown
in Figure 9.33(e). In terms of an interval graph the clique number is the
density of the channel routing problem.

In order to determine zones, let us define S(i) to be the set of nets whose
horizontal segments intersects column i. Assign zones the sequential num-
ber to the columns at which S(i) are maximal. These columns define
zone 1, zone 2, etc., as shown in the table 9.33(c), for the example in Fig-
ure 9.33. The cardinality of S(i) is called local density and the maximum
among all local densities is called maximum density which is the lower
bound on the channel density. In should be noted that a channel routing
problem is completely characterized by the vertical constraint graph and
its zone representation.

2. Merging of Nets: Let N; and N; be the nets for which the following
two conditions are satisfied:

1. There is no edge between v; and v; in HCG.

2. There is no directed path between v; and v; in VCG.

If these conditions are satisfied, net IV; and net N; can be merged to form
a new composite net.

The operation of merging net IV; and net N; modifies the VCG by shrink-
ing node v; and and node v; into node v; ;, and updates the zone repre-
sentation by replacing net /V; and net /V; by net /V; ; which occupies the
consecutive zones including those of net N; and net Nj.

Let us consider the example shown in Figure 9.33(a). Net Ng and net
Ny are merged and the modified VCG along with the zone representation
is shown in Figure 9.34. The updated vertical constraint graph and the
zone representation correspond to the net list in Figure 9.34, where Ny

332 Chapter 9. Detailed Routing

2 3 4 5 6 7 B 9 10 11 12
| 1 } ¢s 9
2
] L
3 [} 7
t 4 4
[8 p 10 4
(a)
Column S(i Zone
1 2
2 123
3 12345 1
O © © . s
5 1245
° ° ° 6 246 =>2
7 467 =3
ONONO s uws
9 4789 4
° 10 789
1 7910 %
12 910
(b) (©)
zone: 1 2 3 4 5
128 7
2 . 8
AR 2.
4 10
5 i6
(d)

Figure 9.33: Example of zone representations.

9.4. Two-Layer Channel Routing Algorithms 333

zone: 1 2 3 4 5

3 ! leo
(a) (b)
1 2 03 4 s 6 7 8 9 omwow
L1 RO
7 7 ¥
2
i }
3 4 7
3 !
\ 4 }

45 ; 8 i § 10 4

(c)

Figure 9.34: Example of merging of nets.

and Ny are replaced by net Ngg. The algorithm, given in Figure 9.35
merges nets as long as two nets from different zones can be merged.

In each iteration, the nets ending in zone z; are added to the list L. While
the nets starting in z;4+1 are kept in list R. Function MERGE then merges
two list L and R so as to minimize the increase in the longest path length
in VCG. The list L' returned by function MERGE consists of all the nets
merged by the function. These nets are not considered further.

In Figure 9.36 we illustrate how the vertical constraint graph is updated
by the algorithm NET-MERGE. The length of the longest path in VCG
is 4 and size of the maximum clique is 5, therefore any optimal solution
takes at least 5 tracks. In first iteration, L = {Ny, N3, N5} and R = {Ng}.
There are three possible net mergings, N;.¢, N3.g, and N5 . Merging N;

334 Chapter 9. Detailed Routing

Algorithm NET-MERGE
begin
L=¢
for z = (21 to z;—1) do
L=L+ {z‘- - (z,;ﬂzq;ﬂ)} 3
R = {zit1 - (2i N 2iy1) };
L' =MERGE(L, R);
L=L-1L"
end.

Figure 9.35: Algorithm NET-MERGE

and Ng creates a path of length 5, merging N3 and Ng creates a path of
length 4, while merging N5 and Ng creates a path of length 4. Therefore
either N3 ¢ or N5 ¢ may be formed. Let us merge N5 and Ng. Similarly,
in second iteration net N7 and net Ny are merged. In the fourth iteration
Nig and Ny are merged. The final graph is shown in Figure 9.36(e). The
track assignment is straight forward. Each node in the final graph is
assigned a separate track. For example, track 1 can be assigned to net
Niog.4. Similarly, tracks 2 and 3 can be assigned to nets Nj7 and net
N5 6.9, respectively. For net Np and net N3 g, either track 4 or 5 can be
assigned.

It should be noted that finding optimal net pairs for merging is a hard
problem. This is due to the fact that the future effects of a net merge
cannot be determined.

It is possible to improve the YK algorithm by allowing some look ahead or
doing rip-up and re-merge operations. In 1982, YK algorithm represented a
major step forward in channel routing algorithms. It formulated the problem
and provided a basis for future development of three layer and multi-layer
algorithms. It has been extended to three layer and gridless environment.
These extended routers will be discussed later in the chapter.

9.4.3.2 Glitter: A Gridless Channel Router

All the algorithms presented thus far in the channel routing are grid-based.
The main drawback of grid-based algorithms is that it is difficult to route nets
with varying wire widths.

Chen and Kuh [CK86] first proposed a gridless variable-width channel
router called Glitter. Glitter can utilize multiple layer technology and design
rules. Terminals can be located at arbitrary positions and can be located
on off-grid points. No columns or tracks are used in routing. Only the wire
width, spacing, and via size are under consideration are used. Nets are allowed
to have different wire widths to satisfy special design needs and improve the
performance of the circuits. Glitter is areserved-layer model routing algorithm.

9.4. Two-Layer Channel Routing Algorithms 335

Track 4 (or §5) =

Figure 9.36: Illustration of algorithm NetMerge.

336 Chapter 9. Detailed Routing

The basic idea of Glitter is somewhat similar to net merge algorithm. In-
stead of computing the longest vertical constraint chains in terms of tracks,
the actual height of the vertical constraint chains is computed and used for
assigning nets to locations in the channel.

Another key observation is that if each edge in the combined constraint
graph is directed, then they specify a routing. Thus the routing problem is
reduced to a problem of assigning directions to edges in the combined constraint
graph.

Glitter uses vertical and horizontal constraint graphs to form a graph called
weighted constraint graph. The weighted constraint graph combines all the ver-
tical and horizontal constraints into the same graph, where each node represents
a horizontal net or subnet, each directed edge represents a vertical constraint,
and each undirected edge represents a horizontal constraint. The weight of the
edge between node A and node B is the minimum vertical distance required
between net A and net B. If net A needs to be placed above net B, then the
edge should be directed from node A to node B.

To build the weighted constraint graph, vertical and horizontal constraints
for each pair of nets (subnets) are checked. If there is more than one constraint,
the larger weight will overrule the smaller, and the directed edge will overrule
the undirected edge. If there are two contradictory directed edges (there is
cycle in VCG), a dogleg must be introduced to break the cycle.

The upper boundary and the lower boundary are also represented by nodes
in the weighted constraint graph. Since every net must be placed below the
upper boundary, a directed edge will be generated from the upper boundary
to each net. Similarly, there is a directed edge from each net to the lower
boundary. The weight for a boundary constraint edge is the minimum distance
required between the boundary and each net.

Figure 9.37(a) shows a simple example of the variable-width channel-routing
problem. In the following analysis, we have assumed the following design rules
for the example. The minimum wire spacing in layer 1 and 2 is assumed to be
3 and 2, respectively, the via size is assumed to be 2 x 2, and the minimum
overlap width that each layer must extend beyond the outer boundary of the
via is assumed to be 1. If the vertical wire width is 4 for every net and the
horizontal wire width for each net is specified in Figure 9.37, then we can
check the vertical and horizontal constraints for each pair of nets (subnets),
and calculate the minimum distance required between them. For example,
net 6 must be placed above net 2 by a minimum distance of 7, so there is a
directed edge from node 6 to node 2 and the weight of this edge is 7. On the
other hand, net 1 should be placed either above or below net 4 because their
horizontal spans overlap each other. So there is an undirected edge between
node 1 and node 4, and the minimum distance (edge weight) required is 6. The
complete weighted constraint graph is shown in Figure 9.37(c).

After the weighted constraint graph is generated, the channel-routing prob-
lem can be formulated as follows. Given a weighted constraint graph, assign a
direction to each undirected edge such that 1) no cycles are generated and 2)
the total weight of the maximum weighted directed path (longest path) from

9.4. Two-Layer Channel Routing Algorithms 337

Figure 9.37: Variable-width channel routing problem.

338 Chapter 9. Detailed Routing

the upper boundary to the lower boundary is minimized. In a graph which has
m undirected edges, there are 2™ possible solutions.

Since the routing solution can always be obtained by assigning directions to
undirected edges, the ordering of edge selection becomes very important. For
each undirected edge in the weighted constraint graph, suppose the assignment
of one direction will result in cycles. The only choice then is to assign the other
direction. Those edges are called critical edges, and they should be assigned
directions first.

The ancestor weight ancw(i) of node ;7 is the total weight of the maximum
weighted ancestor chain of node i. Similarly, the descendant weight desw(z) of
node i is the total weight of the maximum weighted descendant chain of node
i.

The label of each undirected edge(i,j) is defined as the maximum of ancw(i)
+ weight(i,j) + desw(j) and ancw(j) + weight(i, j) + desw(i). The label is
a measure of the total weight of the maximum weighted directed path which
passes through edge(z, j) if an improper direction is assigned to edge(z, j). The
label is defined as oo if the undirected edge is a critical edge. If a label is larger
than the maximum density of the channel, the meaning of this label becomes
significant because it may be the new lower bound for minimum channel height.
Undirected edge with a large label should therefore be assigned a proper direc-
tion as early as possible, so that the increase of the lower bound is less likely
to occur.

Selection of nodes in the graph is based on the ancestor and descendent
weights. If an unprocessed node has no ancestors (or all its ancestors have
been processed), it can be placed close to the upper boundary (i.e., closer than
other unprocessed nodes), and all the undirected edges connected to this node
can be assigned outgoing directions. Similarly, if an unprocessed node does
not have descendants (or all its descendants have been processed), it should be
placed close to the lower boundary, and all the undirected edges connected to
it can be assigned incoming directions. The unprocessed nodes with minimum
ancw(i) or desw(i) are the candidates to be selected. A node is said to be
processed if it has been placed close to the upper or lower boundary. An edge is
said to be processed if it has been assigned a direction. The routing is complete
when all the nodes (or edges) are processed.

The algorithm can be easily extended to accommodate irregularly-shaped
channels by adding the boundary information to the weighted constraint graph.
The Top node will represent the uppermost boundary, and the Bottom node
will represent the lowermost boundary. The weight of boundary constraint
edges should be modified to include the amount of indentation.

9.4.4 Greedy Channel Router

Assigning the complete trunk of a net or a two-terminal net segment of a
multiterminal net severely restricts LEA and dogleg routers. Optimal channel
routing can be obtained if for each column, it can be guaranteed that there is
only one horizontal track per net. Based on this observation, one approach to

9.4. Two-Layer Channel Routing Algorithms 339

(S}
.
"
B~

H
5

2
(a) Split net (b) Collapsed net

Figure 9.38: (a) A split net. (b) The collapsed split net.

reduce channel height could be to route nets column by column trying to join
split horizontal tracks (if any) that belong to the same net as much as possible.

Based on the above observation and approach, Rivest and Fiduccia [RF82]
developed greedy channel router. This makes fewer assumptions than LEA and
dogleg router. The algorithm starts from the leftmost column and places all
the net segments of a column before proceeding to the next right column. In
each column, the router assigns net segments to tracks in a greedy manner.
However, unlike the dogleg router, the greedy router allows the doglegs in any
column of the channel, not necessarily where the terminal of the doglegged net
occurs.

Given a channel routing problem with m columns, the algorithm uses sev-
eral different steps while routing a column. In the first step, the algorithm
connects any terminal to the trunk segment of the corresponding net. This
connection is completed by using the first empty track, or the track that al-
ready contains the net. In other words, minimum vertical segment is used to
connect a trunk to terminal. For example, net 1 in Figure 9.38(a) in column 3
is connected to the same net. The second step attempts to collapse any split
nets (horizontal segments of the same net present on two different tracks) us-
ing a vertical segment as shown in Figure 9.38(b) A split net will occur when
two terminals of the same net are located on different sides of the channel and
cannot be immediately connected because of existing vertical constraints. This
step also brings a terminal connection to the correct track if it has stopped on
an earlier track. If there are two overlapping sets of split nets, the second step
will only be able to collapse one of them.

In the third step, the algorithm tries to reduce the range or the distance
between two tracks of the same net. This reduction is accomplished by using a
dogleg as shown in Figure 9.39(a) and (b). The fourth step attempts to move
the nets closer to the boundary which contains the next terminal of that net.
If the next terminal of a net being considered is on the top (bottom) boundary
of the channel then the algorithm tries to move the net to the upper(lower)
track. In case there is no track available, the algorithm adds extra tracks and
the terminal is connected to this new track. After all five steps have been
completed, the trunks of each net are extended to the next column and the
steps are repeated. The detailed description of the greedy channel routing

340 Chapter 9. Detailed Routing

(a) Split nets (b)

Figure 9.39: (a) Reducing the distance between split nets.

algorithm is in Figure 9.40.

The greedy router sometimes gives solutions which contain an excessive
number of vias and doglegs. It has, however, the capability of providing solution
even in presence of cyclic vertical constraints. The greedy router is more flexible
in the placement of doglegs due to fewer assumptions about the topology of
the connections. An example routed by the greedy channel router is shown in
Figure 9.41.

9.4.5 Hierarchical Channel Router

In [BP83], Burstein and Pelavin presented a two layer channel router based
on the reduction of the routing problem in {(m xn) grid to the routing in (2 x n)
grid and consistent utilization of ‘divide and conquer’ approach.

Let, C(i,) denote the cell in ith row and jth column in an {mxn) grid
G. The terminals are assumed to be in the top and the bottom rows of the
grid. Let, h(i,) denote the horizontal boundary shared by the cell C(i, ;) and
C(i + 1,5). Let, v(i,J) denote the vertical boundary shared by the cell C(i, j)
and C(3,j+1). Each boundary in G has a capacity, which indicates the number
of wires that can pass through that boundary.

In this approach, a large routing area is divided into two rows of routing
tiles. The nets are routed globally in these rows using special types of steiner
trees. The routing in each row is then further refined by recursively dividing
and routing each of the rows. More specifically, the the {m xn) routing grid
is partitioned into two subgrids; the top ([5] x n) and the bottom (|| x n)
subgrid. Each column in these subgrids is considered as a supercell. As a
result, two rows of supercells are obtained, i.e., a (2 xn) grid is obtained, (see
Figure 9.42.) Capacity of each vertical boundary in this grid will be the sum
of corresponding boundary capacities in the original grid. The nets are routed
one at a time in this {2xn) grid, (see Figure 9.43.) Each row of the (2xn)
is then partitioned into a (2xn) grid. The terminal positions for the routing
in the new ({2 x n) subproblems is defined by the routing in the previous level
of hierarchy (see Figure 9.44). This divide and conquer approach is continued
until single cell resolution is reached.

In the following, we discuss the algorithm for routing a net in the (2xn)
grid.

9.4. Two-Layer Channel Routing Algorithms 341

Algorithm GREEDY-CHANNEL-ROUTER (V)
begin
d = DENSITY(N);
(* calculate the lower bound of channel density *)
insert d tracks to channel;
fori=1tom do
T1= GET-EMPTY-TRACK;
if T1 =0 then
ADD-TRACK(T1);
ADD-TRACK(T?2);
else
T2 = GET-EMPTY-TRACK;
if T2 =0 then
ADD-TRACK(T'2);
CONNECT(T;,T1);
CONNECT(B;, T2);
join split nets as much as possible;
bring split nets closer by jogging;
bring nets closer to either top or bottom boundary;
while split nets exists do
increase number of column by 1;
join split nets as much as possible;
end.

Figure 9.40: Algorithm GREEDY-CHANNEL-ROUTER

._.
=
=
(7
=3
L]

[=]
-

[M=
1w

[X
-
[
=
L
[=]
=S
L

P S S P P N

(=T
w
IS
F -
o L]
ad

2 0 5

[=Ia]
E
(=2

:*1ﬂ
i

(=]

L
I [
]
_j r
o— o
o
tL
o
g [
» —0 I_:
- ——q

1. =3

Figure 9.41: Channel routed using a greedy router.

342 Chapter 9. Detailed Routing

Figure 9.42: Reducing (m x n) grid to (2 x n) grid

?M

ool

"L.d

$ &
3 3

Figure 9.43: First level of hierarchy

-
lo—
1.u
L I

ll & [
3

Figure 9.44: Second level of hierarchy

9.4. Two-Layer Channel Routing Algorithms 343

Wiring Within (2xn) Grid: Let, p be a (2xn) boolean matrix, such
that, p(i, j) is true if net Np has a terminal in C(i, 7). Let,cs an array of size
n, such that, c(j) indicates the cost that must be added to the cost of a net
if it crosses the boundary h(1,5). Let, ¢, be a (2 x (n — 1)) matrix such that
¢y (i, 7) indicates the cost which must be added to the cost of a net if it crosses
the boundary v(7, 7). Each element of ¢ and ¢, is a function of the capacity
and utilization of the corresponding boundary; higher the ratio of utilization to
the capacity, higher the cost of crossing of that boundary. Such a cost function
reduces the probability of utilization of a congested boundary in the routes of
the remaining nets. The algorithm to find a minimum cost tree for a net in
(2xn) grid is a recursive algorithm. This algorithms requires definitions of
followingterms:

1. T'(k): It is the minimum cost tree which interconnects the following set
of cells:

{C(i,5) : G £ B)&(p(i, j) = true)} U{C(1, k)}

i.e., it is a minimum cost tree connecting the cells in first £ columns that
have terminals of N, and cell C(1, k).

2. T%(k): It is the minimum cost tree which interconnects the following set
of cells:

{Cl,5) : (G < K)&(p(i,5) = true)} U{C(2,k)}

i.e., it is a minimum cost tree connecting the cells in first & columns that
have terminals of N, and cell C(1, k).

3. T3(k): It is the minimum cost tree which interconnects the following set
of cells:

{CG,5) : (G < R)&(p(1,7) = true)} U{C(1,k),C(2,k)}

i.e., it is a minimum cost tree connecting the cells in first & columns that
have terminals of Np, cell (7(1, k) and cell (7(2, k).

4. T*(k): It denotes a minimum cost forest, containing two different trees
T{(k) and T (k): T(k) uses cell (7(1,k), T4 (k) uses (7(2, k) and the set

{CG,5) : (5 < k)&(p(i,j) = true)}
Let, f and I denote the column number of leftmost and rightmost cells, i.e.,
f = min{klp(1, k) V p(2, k) = true},

I = max{k|p(1, k) V p(2,k) = true}.

Tk +1),i =1,2,3,4 is computed recursively from T%(k), as discussed be-
low:

344 Chapter 9. Detailed Routing

T!(5) T(5)

0——|
®

[]

T35) T4S)

T'(6)

~—

Figure 9.45: Recursively computing T (6) from T%(5),i = 1,2, 3,4

1. Basis: Trees T(k) for k = f can be computed trivially and they serve
as basis for recursion. For k < f, T!(k) and T?(k) consists of a single
vertex C(1,k) and C(2,k) respectively. T*(k) consists of the disjoint
pair of vertices C(1,k) and C(2,k). Whereas, T3(1,k) consists of a path
C(1,k), ..., C(1,s), C(2,s), ..., C(2,k), where, 1 <s <k and

k-1
cn(s) + Z ¢y(1,4) + ¢y(2,4) is minimum.

i=3

Note that if the costs of all horizontal edges are same then T3(k) is
C(1,k),C(2,k).

2. Recursive Step: Suppose for f < k < I, T(k),i¢ = 1,2, 3,4 are con-
structed. In order to construct 77 (k+1), we simply enumerate all possible
extensions from T%(k),i = 1,2,3,4 and select the cheapest one. An ex-
ample in Figure 9.45 shows T%(5),4 = 1,2,3,4 and computation of T(6)
by extending T(5) for net 3.

The above algorithm routes a net N, in O(nlogm) time.

In the higher levels of refinement the cost of crossing a boundary is higher
as the boundaries are partially utilized in the lower level of hierarchy. As a
result, the cost of later routes will be large. If the cost of a route is larger
than a user specified value LRG, the routes are allowed to detour outside the
channel, i.e., vertical tracks are added at the left or right ends of the channel.

9.5. Three-Layer Channel Routing Algorithms 345

Algorithm
Features | LEA Dogleg Y-K Greedy | YACR2 | Hierar- Glitter
chical
Model grid- grid- grid- grid- grid- grid- grid-
based based based based based based less
Dogleg not allowed | allowed | allowed | allowed | allowed | not
allowed allowed
Layer
assign- reserved | reserved | reserved | reserved | reserved®| reserved | reserved
ment

vertical | not
constra- | allowed | allowed | allowed | allowed | allowed allowed | allowed

ints
cyclic not not not not
constra- | allowed | allowed | allowed | allowed | allowed | allowed | allowed

ints

*with some exceptions

Table 9.1: Comparison of different features of two-layer routers.

9.4.6 Comparison of Two-Layer Channel Routers

Extensive research has been done on two layer channel routing. No algorithm
is suitable for all problems and applications. Table 9.1 summarizes different
features of two-layer routers discussed in this section.

As we have noted earlier, all algorithms are not equally good for all channel
routing problems. Therefore, many benchmark channel routing examples have
been proposed. The most famous benchmark is the Deutsch difficult example.
Table 9.2 summarizes the routing results by different algorithms presented in
this section on Deutsch difficult example. The table is reproduced from [PL88].
As it is clear from the table that YACR2 produces best routing for Deutsch
difficult example both in terms of tracks and vias. However, YACR?2 is consid-
erably more complicated to implement as compared to Greedy router, which
produces close to optimal results on most practical examples. In fact, it pro-
duces a solution within one or two tracks of the optimal.

9.5 Three-Layer Channel Routing Algorithms

The two-layer channel routing problem has been studied extensively in the
past decade. In fact there are several two-layer channel routers that can produce
solutions very close to the optimal solution (one or two tracks more than the
minimum number of tracks required). About five years ago, a third metal layer
became feasible. Most of the current gate-array technologies use three layers
for routing. For example, the Motorola 2900ETL macrocell array is a bipolar
gate array which uses three metal layers for routing. DEC’s Alpha chip also

346 Chapter 9. Detailed Routing

ROUTER Tracks | Vias | Wire length
LEA 31 290 6526
Dogleg router 21 346 5331
Y-K router 20 403 5381
Greedy router 20 329 5078
Hierarchical router 19 336 5023
YACR2 19 287 5020

Table 9.2: Results on Deutsch difficult example.

uses three metal layer for routing. Intel’s 486 chip used a three metal layer
process and original Intel pentium was also fabricated on a similar process.
As a consequence, a considerable amount of research has also been done on
three-layer channel routing problem.

9.5.1 Classification of Three-Layer Algorithms

The three-layer routing algorithm can be classified into two main categories:
The reserved layer and the unreserved layer model. The reserved layer model
can further be classified into the VHV model and the HVH model.

Following theorems show the lower bounds of channel routing problem in
three-layer reserved layer routing model, in terms of the maximum clique size
in HCG and the longest path in VCG of the corresponding routing problem.

Theorem 15 In the three layer VHV model, the lower bound on the number
of tracks for a routing problem is huyax -

Theorem 16 In the three layer HVH model, the lower bound on the number
of tracks for a routing problem is max{vmax, ﬁ*g“}

Note that in VHV routing, the vertical constraints between nets no longer
exist. Therefore, the channel height which is equal to the maximum density
can always be realized using LEA. Almost all three-layer routers are extensions
of two-layer routers. The net-merge algorithm by Yoshimura and Kuh [YK82]
has been extended by Chen and Liu [CL84]. The gridless router Glitter [CK86]
has been extended to Trigger by Chen [Che86].

Cong, Wong and Liu [CWL87] take an even general approach and ob-
tain a three-layer solution from a two-layer solution. Finally, Pitchumani and
Zhang [PZ87] partition the given problem into two subproblems and route
them in VHV and HVH models. In this section, we discuss several three-layer
channel routing algorithms.

9.5.2 Extended Net Merge Channel Router

In [CL84], Chen and Liu presented a three-layer channel router based on the
net merging method and the left edge algorithm used in a two-layer channel

9.5. Three-Layer Channel Routing Algorithms 347

routing algorithm by Yoshimura and Kuh [YK82].

As there are no vertical constraints in VHV and therefore the left edge
algorithm is sufficient. In the HVH routing, vertical constraint still exist. As a
result, there should not be a directed path in the VCG between nets that are
placed in both first and third layers on the same track. The merging algorithm
presented in [YK82] can be extended to the HVH problem. In three-layer
routing, in addition to merging nets in the same layer between different zones
the nets in the same zone between different layers can also be merged. Two
types of merging are defined as follows:

1. Serial merging: If there is no horizontal and vertical constraints be-
tween N; and N; then they can be placed on the same layer and the same
track. This operation is called as serial merging.

2. Parallel merging: If nets V; and net N; have horizontal constraints
and if they do not have vertical constraints then they can be placed on
the same track but in different layers. In case of HVH model, one of them
is placed in the first layer, whereas the other is placed in the third layer.
This operation is referred to as parallel merging

As in two-layer routing, the merging procedure is the essential element of the
whole algorithm where two sets of nets are merged. Let Np = {N1,No,..., an}
and Ng = {My,M,,..., My} be two sets of nets to be merged. Two nets
N; € Np and M; € Ng are merged such that N; lies in the longest path in
VCG before merging and farthest away from either the source node or the sink
node, and M; is neither ancestor nor descendent of V;, and after merging N;
and M; the increase of longest path in VCG is minimum.

If the merging is done between two adjacent zones ¢ and 5+ 1, then Np is
the set of nets which terminates at zone 4, N is the set of nets that begin at
zone ¢ + 1.

Let us define the following:

1. Let Mg be the set of nets which begin at zone 7 + 1.
2. my is the number of nets in Np.

3. Let Nt be the set of nets which include: (a) nets which terminate at
zone 4. (b) nets which are placed on a track with no horizontal segment
of nets on the other layer.

4. n; is the number of nets in Nyp.

Before merging nets, all the nets in A7 have been placed on certain tracks,
while nets in Mg have not yet been placed on any track. Therefore, if net
M; € Ng merges with any net in M7, no new track appears. Otherwise,
if net My € Ng merges with another net in Ng, then a new track appears.
Therefore, if ng < nyit is possible for the old tracks (where nets in T are placed)
to contain all the nets in Mg. In such a case, in order to avoid the increase
in the number of tracks, the parallel merging between nets in Ng should be

348 Chapter 9. Detailed Routing

Algorithm MERGE
begin
No = NB; ng = ny;
while NVg # ¢ do
find M; € Q;
No = No - {M;};
if ng < n¢ then Np = Np
else Np = Nr + J\"’Q;
find N; € Np;
if N; € N7 then
(* serial (or parallel) merging (INV;, V;) *)
Nr =Nt — N;;
ney = Ng — 1;
ng =ng —1;
if N; € N then
(* parallel merging (NV;, N;)
NQ - NQ - N;';
ng =ng — 2;
if N; cannot be found then
place N; on a new track;
ng =ng — 1;
ng =1+ 1;
end.

Figure 9.46: Algorithm MERGE

avoided. Conversely, if ny > n,, the old tracks are not enough to contain all
the nets in Vg, at least one new track appears. Parallel merging between nets
in Mg is allowed only in this case.

The details of the merging algorithm are given in Figure 9.46

As a special case, when merging starts, a parallel merging is made between
all the nets which pass through the starting zone.

9.5.3 HVH Routing from HV Solution

In [CWLS87], Cong, Wong, and Liu presented a general technique that sys-
tematically transforms, a two-layer routing solution into a three-layer routing
solution. We will refer to this algorithm as CWL algorithm.

The focus of the CWL algorithm is very similar to the YK algorithm. In
YK algorithm, nets are merged so that all merged nets forming a composite
net are assigned to one track. The objective is to minimize the number of
composite nets. In CWL algorithm, composite nets are merged together to
form super-composite nets. The basic idea is to merge two composite nets such
that the number of super-composite nets is minimized. Two composite nets in

9.5. Three-Layer Channel Routing Algorithms 349

a super-composite net can then be assigned to two different layers on the same
track. In order to find the optimal pair of composite nets that can be merged to
form super-composite nets, a directed acyclic graph called track ordering graph,
TVCG = (V, E) is defined. The vertices in V represent the composite(tracks)
in a given two layer solution. The directed edges in G(S) represent the ordering
restrictions on pairs of tracks. Composite interval ¢; must be routed above
composite interval ¢; if there exists a net N, € ¢; and N, € t;, such that N, and
N, have a vertical constraint. Thus TVCG is in fact a vertical constraint graph
between tracks or composite intervals. The objective of CWL algorithm is to
find a track pairing which reduces the total number of such pairs. Obviously,
we must have at least %/—l pairs. It is easy to see that the problem of finding
an optimal track pairing of a given two layer solution S can be reduced to the
problem of two processor scheduling in which tracks of V are tasks and TCVG
is the task precedence graph. Since the two processor scheduling problem can be
optimally solved in linear time [Gab85, JG72], the optimal track permutation
can also be found in linear time. Figure 9.47(b) shows the track ordering graph
of the two-layer routing solution, shown in Figure 9.47(a), obtained by using
a greedy router. Figure 9.47(c) shows an optimal scheduling solution for the
corresponding two-processor scheduling problem.

The key problem is the number of tracks which are not paired. This happens
due to adjacent vias. If adjacent vias can be removed between two non-paired
tracks so that the tracks can be paired together, it would lead to saving of two
empty tracks. The basic idea is to move the via aside and then a maze router
can be used to connect the portion of the net containing x with the portion of
the net containing the horizontal segment h; (see Figure 9.48).

In order to successfully merge non-paired tracks, we must minimize the
number of adjacent vias between two tracks. This is accomplished by properly
changing the processor (layer) assignment of tasks (tracks). It is easy to see
that if tracks ¢; and ¢; are assigned to be routed in the pth track then the layer
on which a particular track gets routed is still to be decided. In other words,
for each track, we have two choices. However, the choice that we make for
each track can affect the number of adjacent vias. This problem can be solved
by creating a graph, which consists of vertices representing both the possible
choices for the track. Thus, each track is represented by two vertices. Four
vertices of two adjacent tracks are joined by edges. Thus each edge represents
a possible configuration of two adjacent tracks. Each edge is assigned a weight
which is equal to the number of adjacent vias if this configuration represented by
the edge is used. It is easy to see that problem of finding optimal configuration
can be reduced to a shortest path problem. Thus, the problem can be optimally
solved in O(n?) time. Figure 9.47(d) shows the graph described above for the
problem in Figure 9.47(c).

9.5.4 Hybrid HVH-VHYV Router

In [PZ87], Pitchumani and Zhang developed a three-layer channel router
that combines both a HVH and a VHV model based on the idea of partitioning

350 Chapter 9. Detailed Routing
1 003020103041 2030 4S5

o 4 o l
& &

1 30 4 02 05050 403 410

(a)

(1,
i
%

(=2

Time P B,
1 4 Ly
5 t, |t
3 's
(©

Figure 9.47: (a) A two-layer solution. (b) Track ordering graph. (c) An optimal
scheduling solution.

9.5. Three-Layer Channel Routing Algorithms 351

b, b4
g

h,

h,

(a) (b) (c)

Figure 9.48: Local rerouting.

the channel. In this approach the channel can be thought of as two separate
channels, not necessarily of the same size. One portion (upper or lower) is
routed using the VHV and the other portion is routed using the HVH model.
A transition track is usually needed between the two portions. The algorithm
does not allow any dogleg. One of the important feature of this algorithm is
that the pure HVH and VHV can be treated as special cases of this hybrid
approach. This is due to the fact that, in the extreme case, one of the portions
may constitute the whole channel and the other may be nonexistent. Obviously,
no transition track is needed in this case. As a consequence, the result of this
approach is the best between pure HVH and VHV approaches.

The height of a channel depends on two parameters, vmax and Amax. If
Umax >> Pmax, then VHV is best suited for that channel, since it use only Amax
number of tracks. On the other, if Amax >> Umax, then HVH is best suited
for that channel, since it use only -’l‘g“ number of tracks. Figure 9.49(a) and
(b) shows the two cases when HVH and VHV routing models generate optimal
solution. s and ¢ are two dummy nodes signifying top and bottom of the
channel. In practice, many channel routing problems are in fact a combination
of both HVH and VHV, as shown in Figure 9.49(c).

The hybrid algorithm partitions the given netlist into two netlist, such that
each netlist is best suited for either VHV or HVH style of routing. It then
routes them separately thus obtaining two sub-solutions. The algorithm then
inserts transition tracks to complete the connections between the two routed
sub-solutions. The hybrid algorithm consists of the following steps:

1. choose VHV-HVH or HVH-VHYV model;

2. partition the set of nets into two sets; the HVH-set, the set of nets to be
routed in the HVH portion and the VHV-set, those to be routed in VHV
portion of the channel;

3. route the nets.

The key problem is the partitioning of the channel. It is important to note that
not all partitions are routable in the hybrid scheme. It is easy to show that
for a net in a partition, all the nets that have vertical constraints with this net
must also be in the same partition for a valid routable partition. Based on this

352 Chapter 9. Detailed Routing

®

o
o
Vg & ..o
T o
o

(a (b) (c)

Figure 9.49: (a) CRP suited for VHV. (b) CRP suited for HVH. (¢) CRP not
suited for either HVH or VHV.

observation, any routable partition can be represented by a cut of the VCG
with s and ¢ on opposite sides of the cut, with all the nodes above the cut in
upper-set and all the nodes below the cut in lower-set. Figure 9.50 shows an
example of a cut inducing a routable partition; upper-set is {n,...,n2} and
lower-set is {my,...,mx}. The details of the partitioning algorithm based on
the weighted cost function may be found in [PZ87].

To illustrate hybrid routing, we use the same example as in [PZ87]. Fig-
ure 9.51(a) gives the netlists, while Figure 9.51(b) shows a hybrid routing with
VHYV (two tracks) in the upper region and HVH (three tracks) for the lower
region. The routing uses six tracks (including the transition track), while pure
VHYV requires eight tracks and pure HVH uses seven. In some cases, the termi-
nal connections of nets may be such that vertical runs that cross the boundary
between the regions can change layers on one of the regular tracks; in such
cases, the transition track may be removed as shown in Figure 9.51.

9.6 Multi-Layer Channel Routing Algorithms

As the VLSI technology improves, more layers are available for routing. As
aresult, there is a need for developing multilayer routing algorithms. It should
be noted that many standard cell designs can be completed without channel
areas by using over-the-cell techniques (see Chapter 8). It may be noted that
many over-the-cell routing problems are similar to channel routing problems.
In case of full custom, perhaps four layers would be sufficient to obtain layouts
without any routing areas on the real estate. However, new technologies such

9.7. Switchbox Routing Algorithms 353

Figure 9.50: Partitioning for hybrid routing.

as MCM requires true multilayer capabilities since as many as 64 layers may
be used.

In [Ham85], Hambrusch presented an algorithm for a n-layer channel router.
The number of layers, the channel width, the amount of overlap and the number
of contact points are four important factors for routing multi-terminal nets in
multi-layer channels. An insight into the relationship between these four factors
is also presented in [Ham85].

In [BBD*86], Braun developed a multi-layer channel router called Chameleon.
Chameleon is based on YACR2. The main feature of Chameleon is that it uses
a general approach for multilayer channel routing. Stacked vias can be in-
cluded or excluded, and separate design rules for each layer can be specified.
The Chameleon consists of two stages: a partitioner and a detailed router. The
partitioner divides the problem into two and three-layer subproblems such that
the global channel area is minimized. The detailed router then implements the
connections using generalizations of the algorithms employed in YACR?2.

In [ED86], Enbody and Du presented two algorithms for n-layer channel
routing that guarantee successful routing of the channel for n greater that 3.

9.7 Switchbox Routing Algorithms

A switchbox is a generalization of a channel and it has terminals on all
four sides. Switchbox routing problem is more difficult than a channel routing
problem, because the main objective of channel routing is to minimize the
channel height, whereas the objective of switchbox routing is to ensure that all
the net are routed.

354 Chapter 9. Detailed Routing

N B "
(a)

S T

il o . ;| = Track2
? ¢ ; fPs Waw mm @ N 8 © < Transidon Track (9
)

b e R,
vor A !] 'y o4 4 ¢+ =—Track$

----------------- : R F===0 =— Track 1
: t 1 BrmEed ¢ i -— Track 2
9 =— Track 3

Metal 3

Figure 9.51: Example of hybrid routing.

9.7.1 Classification of switchbox routing algorithms

Switchbox routers can be classified as,
1. Greedy Routers,

2. Rip up and Reroute Routers and
3. Others.

Greedy routers are essentially extension of the Greedy channel router. Rip
up and Reroute routers employ some algorithm for finding routes for nets and
modifying the routes to accommodate additional nets. Several other tech-
niques, such as computational geometry, simulated evolution have also been
applied to switchbox routing. In this section, we review one algorithm from

9.7. Switchbox Routing Algorithms 355

each category. In this section we describe four different algorithms for switch-
box routing. BEAVER [CHS88] is an excellent router based on computational
geometry.

9.7.2 Greedy Router

In [Luk85], Luk presented a greedy switchbox router, which is an extension
of the greedy channel router [RF82]. As opposed to a channel, which is open on
the left and the right side, a switchbox is closed from all four sides. Moreover,
there are terminals on the left and right boundaries of a switchbox. Thus in
addition to the terminals on the upper and lower boundaries, the presence of
terminals on the left and right boundaries of the switchbox need to be consid-
ered while routing. This is achieved by the following heuristic:

1. Bring in left terminals: The terminals on the left boundary are
brought to the first column as horizontal tracks.

2. Jog to right terminals: The step in greedy channel router in which
the nets are jogged to their nearest top or bottom terminal is modified
for the nets that have a terminal on the right boundary. Such nets are
jogged to their rarget rows, in addition to jogging to the next top or
bottom terminal. Jogging a net to the next top or bottom terminal is
referred to as JOGy s, Whereas, jogging a net to its target row is referred
to as JOG,. A target row of a net is a row of its terminal on the right
boundary. The nets are jogged to their target rows according to the
following priority.

(a) First choice is a net whose right side of the target row and the
vertical track between the net and target row is empty.

(b) Second choice is a net whose right side of the target row is empty. In
addition, the priority is also based on how close a net can be jogged
to its target row.

(c) Third choice is a net that can be brought closer to its target row.

Ties are resolved by giving higher priority to a net which is further from its
target row. The cyclic conditions at this step can be broken by allowing a net
to cross its target row. (see Figure 9.52.) Note that the optimal way to reach
the target row for a net is to jog once as each jogging wastes a vertical track,
too many joggings may result in running out of tracks. Excessive jogging can
be avoided by allowing a net to jog to its target row only if it can be brought
to or beyond half way between its initial position and the target row.

Several schemes of using JOG,;, and JOG, have been suggested for a net
having terminals on the right and top/bottom boundaries.

1. Scheme 1: For a net that has a terminal on the right boundary JOG, is
performed until it reaches its target row. The top and bottom terminals
are connected by branching out some net segments (see Figure 9.53(a)).

356 Chapter 9. Detailed Routing

Figure 9.52: Cyclic constraints.

-=— Scan Scan —= Scan —=
1 2 1 2 1 2
1 ! I
2 1 2 l 2 1
(a) (b) ©

Figure 9.53: Routing schemes: (a) scheme 1,(b) scheme 2,(c) scheme 3

2. Scheme 2: JOGt/b is used until all top and bottom terminals are con-
nected, JOG, is used from the column where the last top/bottom ter-
minal appears (see Figure 9.53(b)).

3. Scheme 3: In this scheme JOG,;, and JOG, are used in parallel.
Branching out is avoided by either using JOGy/ or JOG, at each column
(see Figure 9.53(c)).

4. Scheme 4: This scheme involves a combination of several schemes. If
the rightmost top/bottom terminal of a net is in the rightmost p% of the
switchbox, scheme 1 is used for that net. Otherwise, scheme 2 is used
(see Figure 9.54).

Determining Scan Direction: Determining scan direction is equivalent
to assigning left edge to one of the edges of the switchbox. Let p; = (e;,es3)
and p2 = (ez,e4) be the opposite pairs of edges of the switchbox. The objective
of this step is to assign one of these pairs as the left-right pair and the other as
the top-bottom pair. This operation is divided into two steps. In the first step,
the top-bottom and the left-right pairs are assigned without identifying left or
right edges in the left-right pair. In the second step the left and the right edges
are identified.

The following measures are defined to achieve the first step. The augmented
density of p; is defined as the overall minimum number of tracks required to
maintain the connectivity of the terminals on opposite pair of edges in p; as in

9.7. Switchbox Routing Algorithms 357

(a) (b)

Figure 9.54: Routing scheme 4 (a) JOG, for net N;, (b) JOG,/;, for net N;

Algorithm GREEDY-SB-ROUTER
begin
Determine the scan direction;
Bring left terminals into column 1;
fori=1toMdo
if no empty track exists then
increase number of tracks;
bring T'(i) and B(i) to empty tracks;
join split nets as much as possible;
for each net with no right terminals do
bring split nets closer by jogging;
for each net with a right terminal do
use scheme 4;
if close to right edge then
fanout to all target rows;
while split net exist do
join split nets as much as possible;
end.

Figure 9.55: Algorithm GREEDY-SB-ROUTER,

358 Chapter 9. Detailed Routing

the channel routing problem, plus the tracks required to connect the nets on
the edges in p, with the nets on pi. The augmented channel density ratio for
p1 = (e1,e3) is defined as the ratio of the number of tracks available between
ey and ez to the augmented density of p;. In a similar manner the augmented
channel density of p can be defined. As the property of the greedy heuristic
is to minimize the number of tracks perpendicular to the scan direction, it is
obvious to assign the left-right pair to the pair that has smaller augmented
channel density ratio.

Let px = (e, e;) be the left-right edge pair assigned in the last step. The
edges in py are assigned the left and the right edges based on the following
rules:

1. An edge in p; which has more terminals and especially multiple terminals
is selected as left edge. This reduces the burden on JOG, and fanout
operations.

2. An edge in pr which is close to less congested region is selected as right
edge. As a result, more free vertical tracks will be available to join split
nets and fanout to target terminals.

The formal description of the GREEDY-SB-ROUTER appears in Figure 9.55.

9.7.3 Rip-up and Re-route Based Router

Shin and Sangiovanni-Vincentelli [SSV86] proposed a switchbox router based
on an incremental routing strategy. It employs maze-running but has an addi-
tional feature of modifying already-routed nets. Some nets are even ripped-up
and re-routed. It is this feature of MIGHTY that makes it suitable for channel
and switch box routing. The cost function used for maze routing penalizes long
paths and those requiring excessive vias. MIGHTY consists of two entities: a
path-finder and a path-conformer. 1t is possible for the router to go into a loop
in the modification phase. This can be avoided by using some sort of time-out
mechanism. The overview of Algorithm MIGHTY is in Figure 9.56.

The worst case time complexity of the algorithm is more than
O(k®pnL), where p and k are the number of terminals and nets, respectively
and L is the complexity of the maze routing algorithm.

9.7.4 Computational Geometry Based Router

In [CHS8S8], Cohoon and Heck presented a switchbox routing algorithm called
BEAVER, based on a delayed layering scheme with computational geometry
techniques. The main objectives of BEAVER are the via and wire length
minimization. BEAVER is an unreserved layer model routing algorithm. While
routing a net, BEAVER delays the layer assignment as long as possible. One of
the important features of BEAVER is that it uses priority queue to determine
the order in which nets are interconnected. An overview of BEAVER is given
in Figure 9.57.

9.7. Switchbox Routing Algorithms 359

Algorithm MIGHTY
begin
1. Extend all pins on the boundaries of the region inside
by one unit;
L — ¢; (* Initialize list *)
2. (* path finder *)
for each net do
MAZE-ROUTE(net, L);
3. sort L in increasing value of costs;
4. while L # ¢ do
Get next path p from L;
if no grid cell in p is occupied then
Implement p; goto step 5;
else invoke the path-finder to find a new feasible
minimum path connecting two unconnected
subnets of the net;
Let § be the increase in cost for the new path p';
if6 < MAXINCREASE then
Implement p'; goto step 5;
(* weak modification *)
Push implemented nets around to
obtain a ‘good’ connection for the given net;
if weak modification fails then
(* strong modification *)
Remove an existing connection and
try to obtain ‘good’ connection;
5. Remove p from L;
end.

Figure 9.56: Algorithm MIGHTY

It can be seen from the algorithm that BEAVER uses up to three methods
to find interconnections for nets: 1) corner router, 2) line sweep router, and 3)
thread router.

Corner router: The corner router tries to connect terminals that form a
corner connection. Such a connection is formed by two terminals if (1) they
belong to the same net, (2) they lie on the adjacent sides of the switchbox,
and (3) there are no terminals belonging to the net that lie between them on
the adjacent sides. The corner router is also a preferred router since it is the
fastest and because its connections tend to be part of the minimum rectilinear
steiner tree for the nets.

During the initialization of the corner priority queue, each net is checked to
see if it has a corner connection. A corner connection can be simply made by

360 Chapter 9. Detailed Routing

Algorithm BEAVER
begin
Initialize control information;
Initialize corner-priority-queue;
corner route;
if there are nets to be routed then
Initialize line-sweep-priority-queue;
Line sweep route;
if there are nets to be routed then
Relax control constraints;
Reinitialize line-sweep-priority-queue;
Line sweep route;
if there are nets to be routed then
Initialize thread-priority-queue;
Thread route;
Perform layer assignment;
end.

Figure 9.57: Algorithm BEAVER

examining the control of the terminals that comprise the corner. If the section
of the control overlap, then the corner can be realized. Nets with one or two
corners need no further checks. However, straightforward connection of four
corner nets can introduce cycles. There are two types of cycles as shown in
Figure 9.58.

An overlap cycle is removed by routing only three of the corners. A four-
terminal cycle can be removed by routing only three of the corners. When the
corner router has to decide upon one of two such corners to route, the one with
least impact on the routability of other nets if preferred.

Linesweep router: The line sweep router is invoked when no more corner
connections can be made. However, if after current net’s linesweep realization,
some other corner connection become realizable, then the linesweep router is
temporarily suspended until the corner priority queue gets emptied. For each
net five possibilities are considered: a wire with single bend, a single straight
wire, a dogleg connection with a unit-length cross piece, three wires arranged
as a horseshoe, and three wires in a stair arrangement. These are shown in
Figure 9.59.

To reduce the number of vias, straight line wires are preferred to dogleg
connections, dogleg to single-bend connections and single bend to two-bend
connections. In looking for its connections, the linesweep router uses the com-
putational geometry technique of plane sweeping. One approach is to use scan-
lines to find straight line connections between disjoint subnets of the net in
question. It works in O(nlogn + k) time. BEAVER uses three scan lines that

9.7. Switchbox Routing Algorithms 361

1? 1@

(a) (b)

4
1
(e) (d)

Figure 9.58: (a)Example of an Overlap Cycle and (b) its Solution (¢) Example
of a Four-Terminal Cycle and (d) its Solution

sweep the plane in tandem: one across the column, one across the row and
a third to detect doglegs. Also, it employs bounding function to reduce the
computational complexity. If some nets still remain unrealized, the control of
existing nets is reduced and the process is repeated a second time. All remain-
ing nets are then routed by a thread router.

Thread router: This router is invoked very sparingly. It is a maze-type
router that seeks to find minimal length connections to realize the remaining
nets. Since, this router does not restrict its connection to any preferred form,
it will find a connection if one exists. Whenever a net N; consists of more
than one routable subnets, a maze expansion, on the lines of Soukup router is
initiated. The expansion starts from a small subnet s that has not been used
in an endeavor to minimize the wire-length and number of vias.

Layer Assignment: This phase primarily aims at minimizing the number
of additional vias introduced. Since, at this stage, all grid points that any wire
passes through are known, it is possible to optimally assign unlayered wires to
a particular layer. BEAVER can also very easily extend this to achieve metal-
maximization. A simple set of heuristics, based on coloring the grid points as
red or black is presented in [CHS8S].

362 Chapter 9. Detailed Routing

Figure 9.59: Prototype Linesweep Connections

Router Vias | Wire length
GRS 36 529
MIGHTY | 32 530
BEAVER | 28 529

Table 9.3: Results on augmented dense switchbox.

9.7.5 Comparison of Switchbox Routers

Table 9.3 compares performance of the switchbox routers discussed in this
chapter. It is apparent from the Table 9.3 that BEAVER routes the augmented
dense switchbox with minimum number of vias, whereas, there is no significant
difference in the wire lengths.

9.8 Summary

Detailed routing is one of the most fundamental steps in VLSI physical de-
sign cycle. The detailed routing problem is solved by routing the channels and
switchboxes. Channel routing and switchbox routing problems have been stud-
ied extensively and several routing algorithms have been proposed by many
researchers.

Routing results may differ based on the selection of routing models. A
routing model can be grid-based where wires follow paths along the grid lines
or gridless, where wires can be placed at any place as long as the design rules are
not violated. Another model is be based on the layer assignments of different
net segments. In reserved layer model, segments are allowed only to a particular
layer(s). Most of the existing routers use reserved layer model. A model is
unreserved if any segment is allowed to be placed in any layer.

The most widely considered objective function for routing a channel is the
minimization of channel density. Other objectives are to minimize the length
of routing nets and to minimize the number of vias. A routing algorithm must
take into consideration the following: net types, net width, via restrictions,
boundary types, number of layer available, degree of criticality of nets.

9.9. Exercises 363

The main objective of (channel) routing is to minimize the total routing
area. Most successful routers are simple in the approach. Greedy is one of
the most efficient and easiest to implement channel routing algorithm. As the
number of layers increase, the routing area used decreases. However, it should
be noted that adding a layer is usually very expensive. In most of the cases, the
routing area can virtually be eliminated using four layers by using advanced
over-the-cell and over-the-block routing techniques discussed in [SBP95].

The objective of switchbox routing is to determine the routability. Several
switchbox routing algorithms have been developed. Greedy and rip-up and
reroute strategies have lead to successful routers.

9.9 Exercises

+1. Develop a river routing algorithm for a simple channel when the channel
height is fixed. Note that a simple channel is the one with straight line
boundaries. Given a channel routing problem, the router should first
check if the given problem can be routed for a given channel height. In
case it cannot be routed, the router should stop, otherwise the router
should find a solution.

2. Prove that every single row routing problem is routable if no restrictions
are placed on the number of doglegs and street congestions.

3. Given the net list in part (c) of Figure 9.61, find a single row routing such
that the street congestion on both the streets is less than or equal to 3.

4. For the net list in Figure 9.61, does there exist a solution for which the
between-node congestion is no more than 1 ?

+5. Prove Theorem 9.

6. Prove Theorem 10. Extend this theorem to multi-terminal single row
routing problems.

+7. Prove Theorem 11. Does there exist a necessary and sufficient condition
for SRRP with at most & (k¥ > 1) doglegs per net ?

8. Does there exist a necessary and sufficient condition for SRRP for Cpg =
17?

19. Consider the two row routing problem given in Figure 9.60. Given two
rows of terminals separated by w tracks, the objective is to find a single
layer routing with minimum congestions in the upper and lower streets.
Note that the number of tracks in the middle street is fixed.

10. Give an instance of a channel routing problem in a two layer restricted
(HV) model in which,

(a) The channel height is greater than vmax.

364 Chapter 9. Detailed Routing

Upper street

w tracks

Lower street

Figure 9.60: A two-row routing problem.

102 001 3024310520535 40¢6 40

—9 0900 00600006000000000000
2 03 6 42010046 4035060205

(a)

1 023 00 1 3

B =T = e = I =]
C A OO A NO —

6 006 3 005

(b)

-0 0000000000000
1 2 3 45 2 6 416 7 3 5717

(c)

Figure 9.61: Routing problems.

9.9.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Exercises 365

(b) The channel height is greater than dmax.
(c) The channel height is greater than both vmayx and dmax.

Give an instance of channel routing problem in two layer Manhattan
model in which there are cyclic constraints.

Prove with an example that it is possible to get better results in channel
routing by using an unrestricted model than the restricted model for a
two layer channel routing problem using the Manhattan model.

Give an example of a channel routing problem for which the greedy router
performs better than the hierarchical router.

Give an example of a channel routing problem for which the hierarchical
router performs better than the greedy router.

Route the channel given in Figure 9.61 (a) using the following routers and
compare their results:

(a) LEA.

(b) Dogleg router.

(c) Y-K algorithm.

(d) Greedy channel router.

(e) Hierarchical channel router.

(f) YACR2.

In the greedy router, while joining split nets in a column, more than one
nets can be joined. Formulate the problem of finding maximum number
of nets that can be joined in a single column. Develop an O(nlogn) time
complexity algorithm for this problem, where n is the total number of
tracks in the channel.

In the greedy channel router, while a column is being routed, segments
of split nets are brought closer by using doglegs in case they cannot be
joined. Develop an efficient strategy that will maximize the number of
nets that can be brought closer.

Give an instance of channel routing problem in three-layer HVH model
in which,

(a) The channel height is greater than vpyax.

(b) The channel height is greater than Zmax.

(c) The channel height is greater than both Q*g“ and Vmax.

Route the channel routing problem given in Figure 9.61 (a) using extended
net merge algorithm by Chen and Liu.

366 Chapter 9. Detailed Routing

20. Show that in the hybrid HVH-VHV routing, the lower bound for the
channel density is dmax/2, Where dmax is the size of the maximum clique
in the corresponding HCG.

21. Show that given a CRP, if vmax = 1 in the corresponding VCG, then
every partition is routable in hybrid routing.

22. Develop a unreserved layer switchbox router when the terminals are lo-
cated in any metal layer.

23. Develop a algorithms for routing in a three dimensional routing grid with
planer upper surface and non-planer lower surface. Assume that the
terminals are located at the lower surface.

24. Solve exercise 23 when the grid has non-planer upper surface.

Bibliographic Notes

The general single-layer routing problem was shown to NP-complete in [Ric84].
In [BP83, DKS+87, LP83, SD81, Tom81], several restricted single-layer routing
problems have been solved optimally. River routing was defined in [DKS*87]
and refined by Leiserson and Pinter [LP83]. Several extensions of the general
river routing algorithm have been proposed [JP89, TH90]. In [JP89], river
routing algorithm is extended to handle multiple, parallel channels. The river
routing is called feed-through river routing, because wires must pass through
gaps that are to be created between the components in each row. In [TH90],
Tuan and Hakimi presented a variation of river routing that minimizes the
number of jogs.

Tsukiyama et. al [TKS82], considered the restricted version of the via
assignment problem where no net has more than one point in any given column.
In [TK78], another restricted version in which each net is forced to use vias from
the same via column is considered. Both [TKS82] and [TK78] have shown that,
with their respective restrictions, deciding whether & via columns are sufficient
to realize the netlist is an NP-Hard problem.

The layering problem was shown to be NP-Hard by Sahni, Bhatt, and
Raghavan [SBR80]. As a consequence, heuristic algorithms have been stud-
ied for this problem. In practice max{Ci,,Cys} < 2 and therefore heuristic
algorithms for the restricted layering problem, in which Cj, = Cyy = 2 has
been considered by several researchers [GKG84, HS84a, TKS82]. The algo-
rithm given in [TKS82] generates solutions with number of layers [, where,
[€133 x I*, where [* is the optimal number of layers. In [HS84a], Han
and Sahni presented two fast algorithms for layering. These algorithms con-
sider one net at a time starting from the leftmost net. A net is assigned to
the first layer in which the channel capacity allows its insertion. If this net
cannot be assigned to any layer, a new layer is started. It was reported that
these algorithms perform better than the algorithm proposed in [TKS82], that
is, they use less layers. It was also reported that these algorithms are much
faster than the one proposed in [TKS82]. Recently, Gonzalez et. al [GKG84]
reported some results on layering; it is not, however, clear how their algorithm

9.9. Exercises 367

compares with earlier algorithms. It appears to be similar to the algorithm
given in [HS84a].

Tsui and Smith [TI81] gave another formulation of single row routing prob-
lem. They considered only two terminal nets and obtained some necessary and
sufficient conditions for the routability of a net list if upper and lower street
capacities are known. Their idea is based on the number of blockages that a
net would encounter in case all nets are laid out in the same street.

Han and Sahni [HS84a] proposed linear time algorithms for the special
case of SRRP when the number of tracks available for routing is restricted to
one, two or three. In 1983 they extended their work and presented simpler
algorithms than that of [HS84b]. They introduced the notion of incoming per-
mutation being the relative ordering of nets with respect to a certain terminal.
The algorithm makes a left to right scan on the terminals. If a new net is start-
ing at the terminal under consideration this net is inserted in all the incoming
permutations to get a set of new permutations. The permutations which do not
meet the street congestion requirement are deleted from further consideration.
Thus, the main idea of the algorithm in [HS84a, HS84b] is to keep track of all
legal permutations. Obviously, this algorithm is only practical for small values
of upper and lower street capacities because of its exponential nature.

Raghavan and Sahni [RS84] investigated the complexity issues of single row
routing problem and the decomposition process for the multi-layer circuit board
problem. In [RS84] it is shown that the via assignment problem considered
by [TK78] remains NP-Hard even for ¥ = 2. They also prove that the problem
of via column permutation is NP-Hard and remains so even if 2 via columns
are allowed per net for decomposing. It is also shown that the problem of
minimizing the total number of vias used is NP-Hard. The problem of finding
a layout with minimum bends (doglegs) is also proved to be NP-Hard [RS84].

In [HS71], Hashimoto and Stevens first introduced the channel routing prob-
lem. Another column-by-column router has been proposed by Kawamoto and
Kajitani [KK79] that guarantees routing with upper bound on the number
of tracks equal to the density plus one, but additional columns are needed to
complete the routing. Ho, lyenger and Zhenq developed a simple but efficient
heuristic channel routing algorithm [HIZ91]. The algorithm is greedy in nature
and can be generalized to switchboxes and multi-layer problems.

Some other notable effort to solve switchbox problem have been reported
by Hamachi and Ousterhout (Detour) [HO84]. This approach is an extension
of the greedy approach for channel routing. In [Joo86], Joobbani proposed a
knowledge based expert system called WEAVER for channel and switchbox
routing. In [LHT89], Lin, Hsu, and Tsai presented a switchbox router based
on the principle of evolution. In [GH89], Gerez and Herrmann presented a
switchbox router called PACKER. This router is based on a stepwise reshaping
technique. WEAVER [Joo86] is an elaborate rule-based expert system router
that often produces excellent quality routing at the cost of excessive computa-
tion time. SILK [LHT89] a switchbox router based on the simulated evolution
technique. A survey and comparison of switchbox routers has been presented
by Marek-Sadowska [Sad92]. In [CPH94] Cho, Pyo, and Heath presented a

368 Chapter 9. Detailed Routing

parallel algorithm, using a conflict resolving method has been developed for
the switchbox routing problem in a parallel processing environment.

