
Chapter 13

Physical Design
Automation of FPGAs

Despite advances in VLSI design automation, the time-to-market for even
an ASIC chip is unacceptable for many applications. The key problem is the
time taken due to fabrication of chips, and therefore there is a need to find
new technologies, which minimize the fabrication time. Gate Arrays use less
time in fabrication as compared to full-custom chips, since only routing layers
are fabricated on top of pre-fabricated wafer. However, fabrication time for
gate-arrays is still unacceptable for several applications. In order to reduce
time to fabricate interconnects, programmable devices have been introduced,
which allow users to program the devices as well as the interconnect. In this
way all custom fabrication steps are eliminated.

Programmable Logic Devices (PLDs) are devices that can be programmed
by the user to implement a logic function. These devices offer short turnaround
time and as a result they are becoming increasingly important for systems as
well as system prototypes. In addition, they have a low manufacturing cost
and are fully testable. One such device which is gaining more popularity is
Field Programmable Gate Arrays (FPGAs) .

As discussed in Chapter 1, FPGA is a new approach to ASIC design that can
dramatically reduce manufacturing turn around time and cost. In its simplest
form, an FPGA consists of a regular array of programmable logic blocks inter-
connected by a programmable routing network. A programmable logic block
is a RAM and can be programmed by the user to act as a small logic mod-
ule. Given a circuit, user can program the programmable logic module using an
FPGA programming tool. The key advantage of FPGAs is re-programmability.
The RAM nature of the FPGAs allows for in-circuit flexibility that is most use-
ful when the specifications are likely to change in the final application. In some
applications such as remote sensors, it is necessary to make system updates via
software. In FPGA, a data channel is provided, which allows easy transfer of
the new logic function and reprogramming the FPGA.

The physical design automation of FPGAs involves mainly three steps which



480 Chapter 13. Physical Design Automation of FPGAs

include partitioning, placement and routing. Partitioning problem in FPGAs
is significantly different from the partitioning problems in other design styles.
This problem mainly depends on the architecture in which the circuit has to be
implemented. Placement problem in FPGAs is very similar to the gate array
placement problem. The routing problem in FPGAs is to find a connection
path and program the appropriate interconnection points. In this chapter, we
discuss the architecture of FPGAs, their physical design cycle, and algorithms
used for partitioning and routing problems in FPGAs.

In order to gain a better perspective of the physical design problems related
to FPGAs, we start with a description of FPGA architectures.

13.1 FPGA Technologies

An FPGA architecture mainly consists of two parts: the logic blocks, and the
routing network. A logic block has a fixed number of inputs and one output. A
wide range of functions can be implemented using a logic block. Given a circuit
to be implemented using FPGAs, it is first decomposed into smaller sub-circuits
such that each of the sub-circuit can be implemented using a single logic block.
There are two types of logic blocks. The first type is based on Look-Up Tables
(LUTs), while second type is based on multiplexers.

1. Look-up table based logic blocks: A LUT based logic block is just
a segment of RAM. A function can be implemented by simply loading its
LUT into the logic block at power up. If function needs
to be implemented, then its truth table (shown in Table 13.1) is loaded
into the logic block. In this way, on receiving a certain set of inputs, the
logic blocks simply ‘look up’ the appropriate output and set the output
line accordingly. Because of the reconfigurable nature of the LUT based
logic blocks, they are also called the Configurable Logic Blocks (CLBs).

It is clear that bits are required in a logic block to represent a
bit input, 1-bit output combinational logic function. Obviously, logic



13.1. FPGA Technologies 481

2.

blocks are only feasible for small values of Typically, the value of
is 5 or 6. For multiple output and sequential circuits the value of
is even less.

Multiplexer based logic blocks: Typically a multiplexer based logic
block consist of three 2-to-l multiplexers and one two-input OR gate as
shown in Figure 13.1. The number of inputs is eight. The circuit within
the logic block can be used to implement a wide range of functions. One
such function, shown in Figure 13.2(a) can be mapped to a logic block
as shown in Figure 13.2(b). Thus, the programming of multiplexer based
logic block is achieved by routing different inputs into the block.

There are two models of routing network: the segmented and the non-
segmented.



482 Chapter 13. Physical Design Automation of FPGAs

1. Non-segmented model: A typical non-segmented model is shown
in Figure 13.3. The non-segmented model is set up as a regular grid
of five horizontal and five vertical metal lines passing between switch
blocks (S). The switch blocks are rectangular switch boxes. They are
used to connect the wiring segments in one channel segment to those in
another. Depending on the topology of the S block, each wiring segment
on one side of S may be switchable to either all or some fraction of wiring
segments on each side of the S block. The fewer the wiring segments a
wiring segment can be switched to, the harder the FPGA is to route.
Figure 13.6 and Figure 13.5 are two of the switch box architectures used
by Xilinx for their 4000XC and 2000XC series. In Fig 13.5 a predefined set
of programmable connections based on some probability and statistical
data is used to obtain an efficient and economical switch box routing
architecture. On the other hand, Figure 13.6 shows a more versatile and
efficient routing architecture, but far more expensive to implement.

In addition to the switch blocks, there are the connection blocks (C)
that are used to connect the logic block pins to the routing channels.
Depending on the topology, each L block pin may be switchable to either
all or some fraction of wiring segments that pass through the C block.
Again, the fewer the wiring segments a pin can be switched to, the harder



13.1. FPGA Technologies 483

2.

the FPGA is to route.

Segmented model: In segmented model, the tracks in the channels
contain predefined wiring segments of same or different lengths. Other
wiring segments pass through the channels vertically. Each input and
output of a logic block is connected to a dedicated vertical segment. As
a result, there are no vertical constraints. There are additional global
vertical lines which provide connections between different channels. Con-
nection between two horizontal segments is provided through an antifuse,
whereas the connection between a horizontal segment and a vertical seg-
ment is provided through a cross fuse (see Figure 13.4). Programming
(blowing) one of these fuses provides a low resistance bidirectional con-
nection between two segments. When blown, antifuses connect the two
segments to form a longer one. In order to program a fuse, a high voltage
is applied across it. FPGAs have special circuitry to program the fuses.
The circuitry consists of the wiring segments and control logic at the
periphery of the chip. Fuse addresses are shifted into the fuse program-
ming circuitry serially. When the objective is to fabricate reconfigurable
routing network re-programmable switches can be used instead of fuses.

The segmented model is uniform if the segments in all tracks have same
length and the antifuses in different tracks in a channel are aligned in
columns.



484 Chapter 13. Physical Design Automation of FPGAs



13.2. Physical Design Cycle for FPGAs 485

The segmented model normally has advantage over the non-segmented model
in terms of utilization of routing resources. In the non-segmented model only
one segment of one net can be routed on a track. Whereas, in the segmented
model, the segments of several nets can be assigned to a track as long as no
two net segments are assigned to the same track segment.

The total number of programmable switches in the segmented model is
higher as compared to the number of switches in the non-segmented model.
The delay of a net is directly proportional to the number of programmable
switches used to route that net. The number of programmable switches used
to route a net is higher in segmented model as compared to non-segmented
model. As a result, the non-segmented model is preferred over the segmented
model when the performance is the primary objective.

13.2 Physical Design Cycle for FPGAs

The physical design cycle for FPGAs consists of the following steps:

1.

2.

3.

Partitioning: The circuit to be mapped onto the FPGA has to be
partitioned into smaller sub-circuits, such that each sub-circuit can be
mapped to a programmable logic block. Unlike the partitioning in other
design styles, there are no constraints on the size of a partition. However,
there are constraints on the inputs and outputs of a partition. This is
due to the unique architecture of FPGAs.

Placement: In this step of the design cycle, the sub-circuits which are
formed in the partitioning phase are allocated physical locations on the
FPGA, i.e., the logic block on the FPGA is programmed to behave like
the sub-circuit that is mapped to it. This placement must be carried out
in a manner that the routers can complete the interconnections. This
is very critical as the routing resources of the FPGA are limited. The
placement algorithms for general gate arrays are normally used for the
placement in FPGAs, and therefore, will not be discussed in this chapter.

Routing: In this phase, all the sub-circuits which have been pro-
grammed on the FPGA blocks are interconnected by blowing the fuses
between the routing segments to achieve the interconnections.

Figure 13.7 shows complete physical design cycle of FPGAs. System design
is available as a directed graph which is partitioned in second step. Placement
involves mapping of sub-circuits onto CLBs. Shaded rectangles represent CLBs
which have been programmed. Final step is routing of channels.

13.3 Partitioning

A 1-output LUT based logic block is powerful than a
1-output multiplexer based logic block, as the former can implement all the



486 Chapter 13. Physical Design Automation of FPGAs



13.3. Partitioning 487

logic functions of inputs, whereas the capabilities of later are limited by
the circuitry inside the block. As a result the LUT based logic blocks are more
popular than the multiplexer based logic blocks. Therefore, in this section we
discuss a partitioning problem only for the LUT based logic blocks.

The circuit to be mapped onto the FPGA has to be partitioned into smaller
sub-circuits such that each sub-circuit can be implemented using the logic
blocks. In order to achieve this, we model the boolean network (N) consisting of
AND, OR and NOT gates using directed acyclic graph (DAG) as follows: Let N
be a set of inputs B be a set of AND and OR gates
and C be a set of NOT gates The corresponding DAG is defined
as where such that represents
an input to the network, and such that
represents an AND or OR gate An edge directed from

to represents a connection from the output of to an input of either
through a NOT gate or direct. If connection between and is through
a NOT gate, then a weight 0 is associated with the edge otherwise the
weight of edge is 1. A logic network is shown in Figure 13.8(a) and
corresponding DAG is shown in Figure 13.8(b).

The nodes in are also referred as the input nodes. A node is a



488 Chapter 13. Physical Design Automation of FPGAs

fan-in node of if there is a directed edge from node to node An
input node does not have a fan-in node.

Graph is a subgraph of a graph G = (V, E), if and
The indegree of a directed

subgraph is defined as the number of edges coming into while
the outdegree of is defined as the number of edges coming out of More
precisely,

The partitioning problem can be formally stated as follows: Given a directed
acyclic graph G, maximum number of output terminals of a logic block denoted
as and maximum number of input terminals of a logic block denoted as

partition G into minimum number of vertex sets such that
subgraphs satisfy the constraints



13.4. Routing 489

The partitioning problem is also referred as the mapping problem as it maps
sub-circuits to logic blocks. Note that this partitioning problem is significantly
different than the partitioning problem considered in Chapter 5. In particular,
the number of vertices assigned to any subgraph is not important. The impor-
tant parameter is the number of edges coming in or going out of a subgraph.

In [FRC90], Francis, Rose and Chung presented a dynamic programming
algorithm for partitioning the DAG for which the fan-in of each node does not
exceed The following terms need to be defined in order to explain the
algorithm. A mapping of a node in a tree T, is a circuit of LUTs
which implements the sub-tree of T that is rooted at and extends to the leaf
nodes of T. The cost of a mapping is the number of LUTs needed to implement
that mapping. The root lookup table of a mapping of the node has as its
single output the boolean function of the node The utilization of a lookup
table is the number of inputs U, out of the K inputs that are actually used
in a circuit. If are the fan-in nodes of a node then the
root lookup table of mapping of includes all the fan-in edges of and some
sub-tree rooted at each fan-in node (see Figure 13.9(a)). The term
utilization division is introduced to denote the distribution of the inputs to the
root lookup table among these subtrees. If is the number of leaf nodes in the
sub-tree then the set specifies the utilization division
of the root lookup table. There may be many possible utilization divisions of
the root lookup table of a mapping of a node. Figure 13.9 shows the utilization
{3,1} for the node whereas, Figure 13.9(b) shows the utilization {1,3} for
the same node

Let MinMap be the optimal mapping of node with a root uti-
lization of U. For each leaf node MinMap is set to 0 for all val-
ues of U. Assuming that MinMap is computed for each fan-in node

of an internal node and for all U = 1 to
MinMap can be computed for U = 1 to as discussed below. In
order to compute MinMap compute MinMap for each utilization
division of U by combining with the mappings of fan-in nodes of
MinMap is simply the minimum cost MinMap computed over all
utilization divisions of U. MinMap for all is computed
while visiting the node in a post-order traversal of the tree. This ensures the
condition that the mappings for all fan-in nodes of are already computed.

In the cases when a node in DAG has a fan-in greater than a node
decomposition phase has to be carried out before applying the above algorithm.
The output of the node decomposition is a functionally equivalent DAG in
which all the nodes have fan-in less than Figure 13.10(b) shows a DAG
obtained after decomposition of node in Figure 13.10(a).

13.4 Routing

After all the sub-circuits have been mapped to logic blocks, these sub-circuits
are interconnected by blowing the fuses in the routing channels. Routing of



490 Chapter 13. Physical Design Automation of FPGAs

FPGAs is different from the routing of general blocks because of the segmented
nature of channels. In the following sections, we discuss FPGA routing for
different models.

13.4.1 Routing Algorithm for the Non-Segmented Model

In this section, we discuss the algorithm presented by Brown, Rose and
Vranesic [BRV92]. The routing is completed in two steps.

1.

2.

Global routing: Global routing in FPGAs can be done by using a
global router for standard cell designs. In general, such a global router
divides the multi-terminal nets into two terminal nets and routes them
with minimum distance path. While doing so it also tries to balance
the densities by distributing the connections among the channels. The
global route defines a coarse route for each connection by assigning it
a sequence of channel segments. Figure 13.11(a) shows a sequence of
channel segments that a global route might choose to connect some pin
of logic block at grid location 4,1 to another at 0,1. The global route is
also called as a course grid graph. Note that the coarse grid graph gives
a path between two L nodes through a sequence of S and C nodes.

Detailed routing: Given a course grid graph G = (V, E) for a two
terminal net, the objective of the detailed router is to choose specific



13.4. Routing 491



492 Chapter 13. Physical Design Automation of FPGAs

wiring segments in each channel segment assigned during global routing.
This is achieved in two steps:

(a)

(b)

Expansion of coarse grid graph: In this step, a coarse grid
graph is expanded to record a subset of possible ways of implement-
ing the connection. The expansion is carried out while spanning
the graph in depth first search manner. The formal description of
algorithm is shown in Figure 13.12. Function DFS-COMPLETE(D)
returns TRUE if all the nodes of D are visited during the depth-first-
search. Function CURRENT-DFS-VISIT returns the node
being visited during DFS. Function re-
turns a wire segment that connects to its predecessor. Func-
tion returns the successor of in Function

returns the subtree of rooted at Function
returns ‘C’ if the node represents a C block, it

returns ‘S’ if represents a S block, it returns an ‘L’ otherwise.
If is a C node, is its successor of and a wire segment l
is used to connect to then the function returns a
set of wiring segments that can be used to connect to Simi-
larly, if is an S node, is its successor of and a wire segment
l is used to connect to then the function re-
turns the a set of wiring segments that can be used to connect
to Function DUPLICATE(T) returns a copy of tree T. Pro-
cedure connects the node to the node
in T by a directed edge from to T and labels the connecting
edge by l. Procedure DELETE(G, T) deletes the subtree T from G.
Let denote the graph obtained after expansion of
G = (V, E). Figure 13.11(b) the graph obtained by expanding the
coarse graph in Figure 13.11 (a).

Connection formation: The expanded graph
contains a number of alternative paths. In this step, all these paths
are enumerated, their cost is computed and the minimum cost path
is selected to implement the connection. Cost of a path is the sum-
mation of the cost of edges in that path. The cost of an edge consists
of two parts: and accounts for the competition be-
tween different nets for the same wiring segments, and reflects
the routing delay associated with the routing segment.

13.4.2 Routing Algorithms for the Segmented Model

In this section, we discuss a basic routing algorithm for segmented model.
This is followed by a discussion on a new segmented model called staggered
segmented model and an associated router.



13.4. Routing 493

13.4.2.1 Basic Algorithm

In this section, we discuss an algorithm presented by Green, Roychowdhury,
Kaptanoglu and Gamal for routing in segmented model [GRKG93]. The input
to the routing problem is a set of intervals a set of tracks

Each track extend from column 1 to column N,
and is divided into a set of contiguous segments separated by switches. These
switches are placed between two successive segments.

For each interval we define and to be the
leftmost and the rightmost column in which the interval is present.

We assume that the intervals in are sorted
on their left edges, i.e., for all i < j.

If an interval is assigned to a track then the segments in track
that are present in the columns spanned by the interval are considered occu-
pied. More precisely, a segment s in track is occupied by an interval if

and
A routing of consists of an assignment of each interval to a track

such that no segment is occupied by more than one connection.
The routing in the segmented model can be achieved using the algorithm

SEG-ROUTER presented in Figure 13.13. The algorithm SEG-ROUTER is a
modified left-edge algorithm. The input to the algorithm is the set of intervals

the set of tracks whereas the output is an array A, such that A[i] gives
the number of the track on which the interval is routed. In algorithm SEG-
ROUTER, function GET-SEGMENT (j, c) returns a segment s on track
such that column c is in the span of s. Function OCCUPIED(s) returns TRUE
if the segment s is occupied, it returns FALSE otherwise. Procedure MARK-

marks all the segments on tracks that are occupied by
Figure 13.14(b) shows a routing in a uniform segmented channel, generated by
Algorithm SEG-ROUTER. Figure 13.14(a) shows a routing in a non-segmented
channel, generated by the left edge algorithm. Note that less number of tracks



494 Chapter 13. Physical Design Automation of FPGAs

are used in uniform segmented channel as compared to the non-segmented
channel.

13.4.2.2 Routing Algorithm for Staggered Model

The segmented model can be improved in several ways: Figure 13.14(c) shows
that if the antifuses are staggered the routing of the channel in Figure 13.14(a)
can be completed in 3 tracks. Figure 13.14(d) shows that if the antifuses are
staggered and if different track segments have different lengths then the routing
of the channel in Figure 13.14(a) can be completed in 2 tracks. In this section,
we discuss a staggered segmentation model and its routing algorithm presented
by Burman, Kamalanathan and Sherwani [BKS92].

In this model, a channel is partitioned into several regions. Each region
is characterized by the segment length. The tracks in each region have equal
length segments separated by staggered placement of antifuse switches. There
are three parameters with respect to the new model: number of regions (p),
number of tracks (t), length of segment in each region (l). Determination
of these three parameters is an important step in this segmentation scheme.
These parameters can be determined by a detailed empirical analysis on several
standard benchmarks. A detailed analysis and determination of these param-
eters can be found in [BKS92]. If the length of segments in all the regions is
same then the model is called as the uniform staggered model otherwise it is
called non-uniform staggered model. Note that the model in Figure 13.14(c) is
uniform staggered model, whereas the one in Figure 13.14(d) is non-uniform
staggered model.

Algorithm SEG-ROUTER can be used for routing in the staggered models.
In a uniform segmented model the delay of a net is same irrespective of the
routing track. Whereas, in the staggered models the delay of a net is dependent
on the the routing track as the number of antifuses in the path of a net in
different tracks may be different. The algorithm SEG-ROUTER is not suitable
for the high performance routing as it does not consider the delay of a net. In
the following, we discuss the algorithm FSCR for the high performance routing
in staggered model [BKS92]. The key feature of this routing algorithm is the
assignments of the nets to the appropriate tracks by delay computation and
delay matching techniques. It should be noted that, for minimum delay routing,
it is not sufficient to just minimize delay based on the antifuse elements, but
also capacitance effects due to the unused portion of the segments spanned by
a net segment (also called as hang-over wires) and the unprogrammed switches
must be considered [BKS92].

The algorithm starts routing the longest nets first. This ensures that the
delay due to the longest net is minimized, which is a prerequisite for the high
performance routing systems. For each net, it finds out a track on which
the net can be routed with minimum delay. The original algorithm has three
phases, region selection, track selection and the region reselection [BKS92]. In
Figure 13.15, we present its simplified version. In algorithm FSCR, the func-
tion OK-TO-ASSIGN returns TRUE if all the segments spanned by the



13.4. Routing 495



496 Chapter 13. Physical Design Automation of FPGAs

interval on track are unoccupied. Function
computes the delay in the interval if is routed on the track Function

is same as that used in algorithm SEG-ROUTER.

13.5 Summary

FPGAs are being used as a new approach to ASIC design which offers dra-
matic reduction in manufacturing turnaround time and cost. The physical
design cycle of an FPGA consists of three steps, partitioning, placement and
routing. The FPGA partitioning problem is different from the conventional
area partitioning problem in the sense that it depends on the architecture in
which the circuit has to be implemented. Placement problem is equivalent to
the general gate array placement problem. However, because of the segmented
nature of the FPGA channels, the routing considerations are quite different.
In high performance FPGA designs, the number of antifuse elements along
with unused tracks and antifuses must be given due considerations as part of
the routing phase. A significant amount of research in the direction of physi-
cal design automation has to be done in order to fully utilize the potential of
FPGAs.



13.6. Exercises 497

13.6 Exercises

1.

2.

3.

4.

† 5.

‡ 6.

7.

8.

Given the graph in Figure 13.16, find the minimum number of config-
urable logic blocks with five inputs and one output
required to partition the circuit.

Given a k-array tree of height h, find minimum number of CLBs required
with inputs and outputs.

Develop a bin-packing algorithm for partitioning a set of functional blocks
into minimum number of CLBs.

Given a set of tracks, number of antifuse elements for the new segmenta-
tion model, formulate the mixed integer program to minimize the number
of antifuse elements. While formulating the problem, consider the delay
caused by the antifuse elements and the hang-over wires.

Several factors play a key role in improving the utilization of channel
resources in an FPGA. Three such factors have been discussed in this
chapter. Discuss what other factors may be considered important for de-
signing a channel segmentation model for high performance applications.

Suggest an efficient channel segmentation model for a three layer routing
in FPGAs.

Develop a channel routing algorithm for three layer routing model in
FPGA.

Consider the function
Partition the circuit corresponding to f such that



498 Chapter 13. Physical Design Automation of FPGAs

(a)

(b)

It can be mapped to a minimum number of CLBs. Show the map-
ping.

It can be mapped to a minimum number of logic modules (each
module has three 2-to-l MUX and a OR gate). Show the mapping.

† 9.

10.

In a CLB all combinations have to be stored. Suggest a method which
stores only those entries which generate either a 0 or a 1 output, whichever
is greater without loss of functionality ?

Can the size and number of MUX inside a logic block be increased ar-
bitrarily ? What can be the maximum size of the MUX inside the logic
block ?

Bibliographic Notes
In mis-pga (old) from Murgai, Nishizaki, Shenoy, Brayton, Vincentelli, de-
composition is performed using Roth-Karp method and kernel extraction.
The reduction method used in this algorithm is computationally expensive.
Hill [Hil91] presented a CAD system for the design of Field Programmable Gate
Arrays. New FPGA architecture was developed and the use of FPGAs from the
user point of view. Another technology mapper, Hydra has been described by
Filo, Yang, Mailhot and Micheli [FYMM91]. The approach is similar to mis-pga
and performs a disjoint decomposition followed by a node minimization phase.
The main difference is that both of these phases are driven by the fact that
the Xilinx CLB may realize two outputs also. Xmap and Amap, developed by
Karplus [Kar91a, Kar91b] constructs an if-then-else dag as decomposition of the
function and uses a covering procedure to map it to CLBs. In mis-pga (new) by
Murgai, Shenoy, Brayton and Sagiovanni-Vincentelli [MSBSV91a], a combina-
torial circuit has been described in terms of Boolean equations to realize it using
the minimum number of basic blocks of the target Table Lookup architecture.
Murgai, Shenoy, Brayton and Sagiovanni-Vincentelli [MSBSV91b] presented
delay optimization for programmable gate arrays. The main considerations in
this paper are the number of levels in the circuit and the wiring delay. A two
phase approach was given. The first phase involves delay optimization during
logic synthesis before placement, and the second uses logic resynthesis during
a timing-driven placement technique. Nam-Sung Woo [Woo91] presented a
heuristic method for the reduction and packing. This is based on the notion of
edge visibility and use of global information. The packing method is based on
the degree of the node common input. Ercolani and Micheli [EM91] presented a
technology mapper for electrically programmable gate arrays. This is based on
matching algorithm that determines whether a portion of a combinational logic
circuit can be implemented by personalizing a module. The benefits include,
an increased efficiency in technology mapping, as well as portability to differ-
ent types of electrically programmable gate arrays. In [CD93] Cong, and Ding
present a study of the area and depth trade-off in LUT based FPGA technology
mapping to obtain an area minimized mapping solution. In [FW97] a new in-
tegrated synthesis and partitioning method for multiple-FPGA applications is
presented. In [CHL97] Technology mapping algorithms for minimizing power



13.6. Exercises 499

consumption in FPGA design are studied. In [SRB97] Macro Block Based
FPGA floorplanning has been discussed. [CL97] presents a new recursive bi-
partitiong algorithm targetted for a hierarchical field programmable system.
In [LW97], a new performance and Routability-Driven Router for symmetrical
array based FPGA’s is presented. A variation of gate array called LPGA (Laser
Programmable Gate Array) is a high performance gate array fabricated by laser
micro-machining system allows development of one-day laser prototypes and
two months high volume production. The base wafers are fabricated with all
interconnection metal layers and a proprietary technique is used to selectively
remove specific metalization points to personalize the arrays. Disconnecting
the excess metal links follows an automated cut-list program, generated per
specific design.


