
Chapter 4

Data Structures and Basic
Algorithms

VLSI chip design process can be viewed as transformation of data from HDL
code in logic design, to schematics in circuit design, to layout data in physi-
cal design. In fact, VLSI design is a significant database management prob-
lem. The layout information is captured in a symbolic database or a polygon
database. In order to fabricate a VLSI chip, it needs to be represented as a
collection of several layers of planar geometric elements or polygons. These ele-
ments are usually limited to Manhattan features (vertical and horizontal edges)
and are not allowed to overlap within the same layer. Each element must be
specified with great precision. This precision is necessary since this information
has to be communicated to output devices such as plotters, video displays, and
pattern-generating machines. Most importantly, the layout information must
be specific enough so that it can be sent to the fab for fabrication. Symbolic
database captures net and transistor attributes. It allows a designer to rapidly
navigate throughout the database and make quick edits while working at a
higher level. The symbolic database is converted into a polygon database prior
to tapeout. In the polygon database, the higher level relationship between the
objects is somewhat lost. This process is analogous to conversion of a higher
level programming language (say FORTRAN) code to a lower level program-
ming language (say Assembly) code. While it is easier to work at symbolic
level, it cannot be used by the fab directly. In some cases, at late stages of the
chip design process, some edits have to be made in the polygon database. The
major motivation for use of the symbolic database is technology independence.
Since physical dimensions in the symbolic database are only relative, the de-
sign can be implemented using any process. However, in practice, complete
technology independence has never be reached.

The layouts have historically been drawn by human layout designers to
conform to the design rules and to perform the specified functions. A physical
design specialist typically converted a small circuit into layout consisting of a
set of polygons. These manipulations were time consuming and error prone,

98 Chapter 4. Data Structures and Basic Algorithms

even for small layouts. Rapid advances in fabrication technology in recent
years have dramatically increased the size and complexity of VLSI circuits. As
a result, a single chip may include several million transistors. These techno-
logical advances have made it impossible for layout designers to manipulate
the layout databases without sophisticated CAD tools. Several physical design
CAD tools have been developed for this purpose, and this field is referred to
as Physical Design Automation. Physical design CAD tools require highly spe-
cialized algorithms and data structures to effectively manage and manipulate
layout information. These tools fall in three categories. The first type of tools
help a human designer to manipulate a layout. For example, a layout editor
allows designers to add transistors or nets to a layout. The second type of tools
are designed to perform some task on the layout automatically. Example of
such tools include channel routers and placement tools. It is also possible to
invoke a tool of second type from the layout editor. The third type of tools
are used for checking and verification. Example of such tools include; DRC
(design rule checker) and LVS verifier (layout versus schematics verifier). The
bulk of the research of physical design automation has focused on tools of the
last two types. However, due to broad range and significant impact the tools of
second type have received the most attention. The major accomplishment in
that area has been decomposition of the physical design problem into several
smaller (and conceptually easier) problems. Unfortunately, even these prob-
lems are still computationally very hard. As a result, the major focus has been
on development on design and analysis of heuristic algorithms for partitioning,
placement, routing and compaction. Many of these algorithms are based on
graph theory and computational geometry. As a result, it is important to have
a basic understanding of these two fields. In addition, several special classes
of graphs are used in physical design. It is important to understand properties
and algorithms about these classes of graphs to develop effective algorithms in
physical design.

This chapter consists of three parts. First we discuss the basic algorithms
and mathematical methods used in VLSI physical design. These algorithms
form the basis for many of the algorithms presented later in this book. In the
second part of this chapter, we shall study the data structures used in layout
editors and the algorithms used to manipulate these data structures. We also
discuss the formats used to represent VLSI layouts. In the third part of this
chapter, we will focus on special classes of graphs, which play a fundamental
role in development of these algorithms. Since most of the algorithms in VLSI
physical design are graph theoretic in nature, we devote a large portion of
this chapter to graph algorithms. In the following, we will review basic graph
theoretic and computation geometry algorithms which play a significant role
in many different VLSI design algorithms. Before we discuss the algorithms,
we shall review the basic terminology.

4.1. Basic Terminology 99

4.1 Basic Terminology

A graph is a pair of sets G = (V, E), where V is a set of vertices, and E is
a set of pairs of distinct vertices called edges. We will use V(G) and E(G) to
refer to the vertex and edge set of a graph G if it is not clear from the context.
A vertex is adjacent to a vertex if is an edge, i.e., The
set of vertices adjacent to is An edge is incident on the
vertices and which are the ends of The degree of a vertex is the
number of edges incident with the vertex

A complete graph on vertices is a graph in which each vertex is adjacent
to every other vertex. We use to denote such a graph. A graph is called
the complement of graph G = (V, E) if H = (V, F), where,

A graph is a subgraph of a graph G if and only if and
If and then is a vertex induced

subgraph of G. Unless otherwise stated, by subgraph we mean vertex induced
subgraph.

A walk P of a graph G is defined as a finite alternating sequence
of vertices and edges, beginning and ending with vertices, such

that each edge is incident with the vertices preceding and following it.
A tour is a walk in which all edges are distinct. A walk is called an open

walk if the terminal vertices are distinct. A path is a open walk in which no
vertex appears more than once.

The length of a path is the number of edges in it. A path is a path if
and A cycle is a path of length where A cycle

is called odd if it's length is odd, otherwise it is an even cycle. Two vertices
and in G are connected if G has a path. A graph is connected if all pairs
of vertices are connected. A connected component of G is a maximal connected
subgraph of G. An edge is called an cut edge in G if its removal from G
increases the number of connected components of G by at least one. A tree is
a connected graph with no cycles. A complete subgraph of a graph is called a
clique.

A directed graph is a pair of sets where V is a set of vertices and
is a set of ordered pairs of distinct vertices, called directed edges. We use the
notation for a directed graph, unless it is clear from the context. A directed
edge is incident on and and the vertices and are called the
head and tail of respectively. is an in-edge of and an out-edge of
The in-degree of denoted by is equal to the number of in-edges of
similarly the out-degree of denoted by is equal to the number of out-
edges of An orientation for a graph G = (V, E) is an assignment of direction
for each edge. An orientation is called transitive if, for each pair of edges
and there exists an edge If such a transitive orientation exists
for a graph G, then G is called a transitively orientable graph. Definitions of
subgraph, path, walk are easily extended to directed graphs. A directed acyclic
graph is a directed graph with no directed cycles. A vertex is an ancestor
of (and is a descendent of) if there is a directed path in G. A
rooted tree (or directed tree) is a directed acyclic graph in which all vertices

100 Chapter 4. Data Structures and Basic Algorithms

have in-degree 1 except the root, which has in-degree 0. The root of a rooted
tree T is denoted by root(T). The subtree of tree T rooted at is the subtree
of T induced by the descendents of . A leaf is a vertex in a directed acyclic
graph with no descendents.

A hypergraph is a pair (V, E), where V is a set of vertices and E is a family
of sets of vertices. A hyperpath is a sequence of
distinct vertices and distinct edges, such that vertices and are elements
of the edge Two vertices and are connected in a hypergraph
if the hypergraph has a hyperpath. A hypergraph is connected if every
pair of vertices are connected.

A bipartite graph is a graph G whose vertex set can be partitioned into two
subsets X and Y, so that each edge has one end in X and one end in Y; such a
partition (X , Y) is called bipartition of the graph. A complete bipartite graph is
a bipartite graph with bipartition (X , Y) in which each vertex of X is adjacent
to each vertex of Y; if |X| = and |Y| = , such a graph is denoted by
An important characterization of bipartite graphs is in terms of odd cycles. A
graph is bipartite if and only if it does not contain an odd cycle.

A graph is called planar if it can be drawn in the plane without any two
edges crossing. Notice that there are many different ways of ‘drawing’ a planar
graph. A drawing may be obtained by mapping a vertex to a point in the
plane and mapping edges to paths in the plane. Each such drawing is called
an embedding of G. An embedding divides the plane into finite number of
regions. The edges which bound a region define a face. The unbounded region
is called the external or outside face. A face is called an odd face if it has odd
number of edges. Similarly a face with even number of edges is called an even
face. The dual of a planar embedding T is a graph such the

v is a face in T} and two vertices share an edge if their corresponding
faces share an edge in T.

4.2 Complexity Issues and NP-hardness

Several general algorithms and mathematical techniques are frequently used
to develop algorithms for physical design. While the list of mathemat-
ical and algorithmic techniques is quite extensive, we will only mention the
basic techniques. One should be very familiar with the following techniques to
appreciate various algorithms in physical design.

1.

2.

3.

4.

5.

Greedy Algorithms

Divide and Conquer Algorithms

Dynamic Programming Algorithms

Network Flow Algorithms

Linear/Integer Programming Techniques

4.2. Complexity Issues and NP-hardness 101

Since these techniques and algorithms may be found in a good computer
science or graph algorithms text, we omit the discussion of these techniques
and refer the reader to an excellent text on this subject by Cormen, Leiserson
and Rivest [CLR90].

The algorithmic techniques mentioned above have been applied to various
problems in physical design with varying degrees of success. Due to the very
large number of components that we must deal with in VLSI physical design
automation, all algorithms must have low time and space complexities. For
algorithms which must operate on the entire layout even quadratic
algorithms may be intolerable. Another issue of great concern is the constants
in the time complexity of algorithms. In physical design, the key idea is to
develop practical algorithms, not just polynomial time complexity algorithms.
As a result, many linear and quadratic algorithms are infeasible in physical
design due to large constants in their complexity.

The major cause of concern is absence of polynomial time algorithms for
majority of the problems encountered in physical design automation. In fact,
there is evidence that suggests that no polynomial time algorithm may exist for
many of these problems. The class of solvable problems can be partitioned into
two general classes, P and NP. The class P consists of all problems that can be
solved by a deterministic turing machine in polynomial time. A conventional
computer may be viewed as such a machine. Minimum cost spanning tree,
single source shortest path, and graph matching problems belong to class P.
The other class called NP, consists of problems that can be solved in polyno-
mial time by a nondeterministic turing machine. This type of turing machine
may be viewed as a parallel computer with as many processors as we may
need. Essentially, whenever a decision has several different outcomes, several
new processors are started up, each pursuing the solution for one of the out-
comes. Obviously, such a model is not very realistic. If every problem in class
NP can be reduced to a problem P, then problem P is in class NP-complete.
Several thousand problems in computer science, graph theory, combinatorics,
operations research, and computational geometry have been proven to be NP-
complete. We will not discuss the concept of NP-completeness in detail, in-
stead, we refer the reader to the excellent text by Garey and Johnson on this
subject [GJ79]. A problem may be stated in two different versions. For ex-
ample, we may ask does there exist a subgraph H of a graph G, which has a
specific property and has size or bigger? Or we may simply ask for the largest
subgraph of G with a specific property. The former type is the decision version
while the latter type is called the optimization version of the problem. The
optimization version of a problem P, is called NP-hard if the decision version
of the problem P is NP-complete.

4.2.1 Algorithms for NP-hard Problems

Most optimization problems in physical design are NP-hard. If a problem
is known to be NP-complete or NP-hard, then it is unlikely that a polynomial
time algorithm exists for that problem. However, due to practical nature of the

102 Chapter 4. Data Structures and Basic Algorithms

physical design automation field, there is an urgent need to solve the problem
even if it cannot be solved optimally. In such cases, algorithm designers are
left with the following four choices.

4.2.1.1 Exponential Algorithms

If the size of the input is small, then algorithms with exponential time com-
plexity may be feasible. In many cases, the solution of a certain problem be
critical to the performance of the chip and therefore it is practical to spend
extra resources to solve that problem optimally. One such exponential method
is integer programming, which has been very successfully used to solve many
physical design problems. Algorithms for solving integer programs do not have
polynomial time complexity, however they work very efficiently on moderate
size problems, while worst case is still exponential. For large problems, algo-
rithms with exponential time complexity may be used to solve small sub-cases,
which are then combined using other algorithmic techniques to obtain the global
solution.

4.2.1.2 Special Case Algorithms

It may be possible to simplify a general problem by applying some restrictions
to the problem. In many cases, the restricted problem may be solvable in
polynomial time. For example, the graph coloring problem is NP-complete for
general graphs, however it is solvable in polynomial time for many classes of
graphs which are pertinent to physical design.

Layout problems are easier for simplified VLSI design styles such as stan-
dard cell, which allow usage of special case algorithms. Conceptually, it is
much easier to place cells of equal heights in rows, rather than placing arbi-
trary sized rectangles in a plane. The clock routing problem, which is rather
hard for full-custom designs, can be solved in time for symmetric struc-
tures such as gate arrays. Another example may be the Steiner tree problem
(see Section 4.3.1.6). Although the general Steiner tree problem is NP-hard,
a special case of the Steiner tree problem, called the single trunk steiner tree
problem (see exercise 4.7), can be solved in time.

4.2.1.3 Approximation Algorithms

When exponential algorithms are computationally infeasible due to the size
of the input and special case algorithms are ruled out due to absence of any
restriction that may be used, designers face a real challenge. If optimality is not
necessary and near-optimality is sufficient, then designers attempt to develop an
approximation algorithm. Often in physical design algorithms, near-optimality
is good enough. Approximation algorithms produce results with a guarantee.
That is, while they may not produce an optimal result, they guarantee that the
result would never be worse than a lower bound determined by the performance
ratio of the algorithm. The performance ratio of an algorithm is defined as

where is the solution produced by the algorithm and is the optimal

4.2. Complexity Issues and NP-hardness 103

solution for the problem. Recently, many algorithms have been developed with
very close to 1. We will use vertex cover as an example to explain the concept

of an approximation algorithm.
Vertex cover is basically a problem of covering all edges by using as few

vertices as possible. In other words, given an undirected graph G = (V,E),
select a subset such that for each edge either or or
both are in and has minimum size among all such sets. The vertex cover
problem is known to be NP-complete for general graphs. However, the simple
algorithm given in Figure 4.1 achieves near optimal results. The basic idea is
to select an arbitrary edge and delete it and all edges incident on and

. Add and to the vertex cover set S. Repeat this process on the new
graph until all edges are deleted. The selected edges are kept in a set R.

Since no edge is checked more than once, it is easy to see that the algorithm
AVC runs in O(| E |) time.

Theorem 1 Algorithm AVC produces a solution with a performance ratio of
0.5.

Proof: Note that no two edges in R have a vertex in common, and |S| = 2 × |R|.
However, since R is set of vertex disjoint edges, at least | R | vertices are needed
to cover all the edges. Thus

In Section 4.5.6.2, we will present an approximation algorithm for finding
maximum k-partite subgraph in circle graphs. That algorithm is used
in topological routing, over-the-cell routing,via minimization and several other
physical design problems.

4.2.1.4 Heuristic Algorithms

Faced with NP-complete problems, heuristic algorithms are frequently the
answer. A heuristic algorithm does produce a solution but does not guaran-

104 Chapter 4. Data Structures and Basic Algorithms

tee the optimality of the solution. Such algorithms must be tested on vari-
ous benchmark examples to verify their effectiveness. The bulk of research in
physical design has concentrated on heuristic algorithms. An effective heuris-
tic algorithm must have low time and space complexity and must produce an
optimal or near optimal solution in most realistic problem instances. Such algo-
rithms must also have good average case complexities. Usually good heuristic
algorithms are based on optimal algorithms for special cases and are capable of
producing optimal solutions in a significant number of cases. A good example
of such algorithms are the channel routing algorithms (discussed in chapter 7),
which can solve most channel routing problems using one or two tracks more
than the optimal solution. Although the channel routing problem in general is
NP-complete, from a practical perspective, we can consider the channel routing
problem as solved.

In many cases, an time complexity heuristic algorithm has been devel-
oped, even if an optimal or time complexity algorithm is known
for the problem. One must keep in mind that optimal solutions may be hard
to obtain and may be practically insignificant if a solution close to optimal can
be produced in a reasonable time. Thus the major focus in physical design has
been on the development of practical heuristic algorithms which can produce
close to optimal solutions on real world examples.

4.3 Basic Algorithms

Basic algorithms which are frequently used in physical design as subalgo-
rithms can be categorized as: graph algorithms and computational geometry
based algorithms. In the following, we review some of the basic algorithms in
both of these categories.

4.3.1 Graph Algorithms

Many real-life problems, including VLSI physical design problems, can be
modeled using graphs. One significant advantage of using graphs to formulate
problems is that the graph problems are well-studied and well-understood.
Problems related to graphs include graph search, shortest path, and minimum
spanning tree, among others.

4.3.1.1 Graph Search Algorithms

Since many problems in physical design are modeled using graphs, it is im-
portant to understand efficient methods for searching graphs. In the following,
we briefly discuss the three main search techniques.

1. Depth-First Search: In this graph search strategy, graph is searched
‘as deeply as possible’. In Depth-First Search (DFS), an edge is selected
for further exploration from the most recently visited vertex . When
all the edges of have been explored, the algorithm back tracks to the

4.3. Basic Algorithms 105

previous vertex, which may have an unexplored edge. Figure 4.4 is an
outline of a depth-first search algorithm. The algorithm uses an array
MARKED () which is initialized to zero before calling the algorithm to
keep track of all the visited vertices.

It is easy to see that the time complexity of depth-first search is O(| V | +
|E|). Figure 4.2(c) shows an example of the depth first search for the
graph shown in Figure 4.2(a).

Breadth-First Search: The basic idea of Breadth-First Search (BFS)
is to explore all vertices adjacent to a vertex before exploring any other
vertex. Starting with a source vertex , the BFS first explores all edges
of , puts the reachable vertices in a queue, and marks the vertex as
visited. If a vertex is already marked visited then it is not enqueued. This
process is repeated for each vertex in the queue. This process of visiting
edges produces a BFS tree. The BFS algorithm can be used to search
both directed and undirected graphs. Note that the main difference be-

2.

106 Chapter 4. Data Structures and Basic Algorithms

3.

tween the DFS and the BFS is that the DFS uses a stack (recursion is
implemented using stacks), while the BFS uses a queue as its data struc-
ture. The time complexity of breadth first search is also O(|V| + |E|).
Figure 4.2(b) shows an example of the BFS of the graph shown in Fig-
ure 4.2(a).

Topological Search: In a directed acyclic graph, it is very natural
to visit the parents, before visiting the children. Thus, if we list the
vertices in the topological order, if G contains a directed edge ,
then appears before in the topological order. Topological search can
be done using depth first search and hence it has a time complexity of
O(| V| + |E |) . Figure 4.3 shows an example of the topological search.
Figure 4.3(a) shows an entire graph. First vertex A will be visited since
it has no parent. After visiting A , it is deleted (see Figure 4.3(b)) and
we get vertices B and C as two new vertices to visit. Thus, one possible
topological order would be A, B, C, D, E, F.

4.3.1.2 Spanning Tree Algorithms

Many graph problems are subset selection problems, that is, given a graph
G = (V,E), select a subset such that has property Some
problems are defined in terms of selection of edges rather than vertices. One
frequently solved graph problem is that of finding a set of edges which spans
all the vertices. The Minimum Spanning Tree (MST) is an edge selection
problem. More precisely, given an edge-weighted graph G = (V, E), select
a subset of edges such that induces a tree and the total cost of
edges is minimum over all such trees, where is the cost
or weight of the edge

There are basically three algorithms for finding a MST:

1.

2.

3.

Boruvka’s Algorithm

Kruskal’s Algorithm

Prim’s Algorithm.

4.3. Basic Algorithms 107

We will briefly explain Kruskal’s algorithm [Kru56], whereas the details of other
algorithms can be found in [Tar83]. Kruskal’s algorithm starts by sorting the
edges by nondecreasing weight. Each vertex is assigned to a set. Thus at
the start, for a graph with vertices, we have sets. Each set represents a
partial spanning tree, and all the sets together form a spanning forest. For
each edge from the sorted list, if and belong to the same set, the
edge is discarded. On the other hand, if and belong to disjoint sets, a
new set is created by union of these two sets. This edge is added to the
spanning tree. In this way, algorithm constructs partial spanning trees and
connects them whenever an edge is added to the spanning tree. The running
time of Kruskal’s algorithm in O(| E | log |E |) . Figure 4.5 shows an example of
Kruskal’s algorithm. First edge (D, F) is selected since it has the lowest weight
(See Figure 4.5(b)). In the next step, there are two choices since there are two
edges with weight equal to 2. Since ties are broken arbitrarily, edge (D, E) is
selected. The final tree is shown in Figure 4.5(f).

108 Chapter 4. Data Structures and Basic Algorithms

4.3.1.3 Shortest Path Algorithms

Many routing problems in VLSI physical design are in essence shortest path
problems in special graphs. Shortest path problems, therefore, play a significant
role in global and detailed routing algorithms.

1.

2.

Single Pair Shortest Path: This problem may be viewed as a vertex
or edge selection problem. Precisely stated, given an edge-weighted graph
G = (V, E) and two vertices select a set of vertices
including such that P induces a path of minimum cost in G. Let

be the weight of edge we assume that for each

Dijkstra [Dij59] developed an algorithm for single pair shortest
path, where is the number of vertices in the graph. In fact, Dijkstra’s
algorithm finds shortest paths from a given vertex to all the vertices in
the graph. See Figure 4.6 for a description of the shortest path algorithm.
Figure 4.7(a) shows an edge weighted graph while Figure 4.7(b) shows the
shortest path between vertices B and F found by Dijkstra’s algorithm.

All Pairs Shortest Paths: This problem is a variant of SPSP, in which
the shortest path is required for all possible pairs in the graph. There are
a few variations of all pairs shortest path algorithms for directed graphs.
Here we discuss the Floyd-Warshall algorithm which runs in time
and is based on a dynamic programming technique.

The algorithm is based on the following observation. Given a directed
graph G = (V, E), let Consider a subset

for some . For any pair of vertices
consider all paths from to with intermediate vertices from and
let be the the one with minimum weight (an intermediate vertex of
a path is any vertex of other than and).
The Floyd-Warshall algorithm exploits the relationship between path
 and the shortest path from to with intermediate vertices from

Let be the weight of a shortest path from to
with all intermediate vertices from For a path

from to is one with no intermediate vertices, thus having at most
one edge, hence A recursive formulation of all pairs
shortest path problem can therefore be given as:

The all pairs shortest path problem allows many paths to share an edge.
If we restrict the number of paths that can use a particular edge, then the
all pairs shortest path problem becomes NP-hard. The all pairs shortest
path problem plays a key role in the global routing phase of physical
design.

4.3. Basic Algorithms 109

110 Chapter 4. Data Structures and Basic Algorithms

4.3.1.4 Matching Algorithms

Given an undirected graph G = (V, E), a matching is a subset of edges
such that for all vertices at most one edge of is incident on

. A vertex is said to be matched by matching if some edge in is incident
on ; otherwise is unmatched. A maximum matching is a matching with
maximum cardinality among all matchings of a graph, i.e., if is a maximum
matching in G, then for any other matching in Figure 4.8
shows an example of matching. A matching is called a bipartite matching if the
underlying graph is a bipartite graph. Both matching and bipartite matching
have many important applications in VLSI physical design. The details of
different matching algorithms may be found in [PS82].

4.3.1.5 Min-Cut and Max-Cut Algorithms

Min-cut and Max-cut are two frequently used graph problems which are
related to partitioning the vertex set of a graph.

The simplest Min-cut problem can be defined as follows: Given a graph
G = (V, E), partition V into subsets and of equal sizes, such that the
number of edges is minimized. The set is also
referred to as a cut. A more general min-cut problem may specify the sizes of
subsets, or it may require partitioning V into different subsets. The min-cut
problem is NP-complete [GJ79]. Min-cut and many of its variants have several
applications in physical design, including partitioning and placement.

The Max-cut problem can be defined as follows: Given a graph G = (V, E),
find the maximum bipartite graph of G. Let be the maximum
bipartite of G, which is obtained by deleting K edges of G, then G has a
max-cut of size |E| – K.

Max-cut problem is NP-complete [GJ79]. Hadlock [Had75] presented an
algorithm which finds max-cut of a planar graph. The algorithm is formally
presented in Figure 4.9. Procedure PLANAR-EMBED finds a planar embed-
ding of G, and CONSTRUCT-DUAL creates a dual graph for the embedding.
Procedure CONSTRUCT-WT-GRAPH constructs a complete weighted graph
by using only vertices corresponding to odd faces. The weight on the edge

 indicates the length of the shortest path between vertices and v in

4.3. Basic Algorithms 111

Note that the number of odd faces in any planar graph is even. Procedure
MIN-WT-MATCHING pairs up the vertices in R. Each edge in matching rep-
resents a path in G. This path actually passes through even faces and connects
two odd faces. All edges on the path are deleted. Notice that this operation
creates a large even face. This edge deletion procedure is repeated for each
matched edge in M. In this way, all odd faces are removed. The resulting
graph is bipartite.

Consider the example graph shown in Figure 4.10(a). The dual of the graph
is shown in Figure 4.10(b). The minimum weight matching of cost 4 is (3, 13)
and (5, 10). The edges on the paths corresponding to the matched edges, in M,
have been deleted and the resultant bipartite graph is shown in Figure 4.10(d).

4.3.1.6 Steiner Tree Algorithms

Minimum cost spanning trees and single pair shortest paths are two edge
selection problems which can be solved in polynomial time. Surprisingly, a
simple variant of these two problems, called the Steiner minimum tree problem,
is computationally hard.

The Steiner Minimum Tree (SMT) problem can be defined as follows: Given
an edge weighted graph G = (V, E) and a subset select a subset
such that and induces a tree of minimum cost over all such trees.

The set D is referred to as the set of demand points and the set is
referred to as Steiner points. In terms of VLSI routing the demand points are
the net terminals. It is easy to see that if D = V , then SMT is equivalent to
MST, on the other hand, if |D| = 2 then SMT is equivalent to SPSP. Unlike
MST and SPSP, SMT and many of its variants are NP-complete [GJ77]. In
view of the NP-completeness of the problem, several heuristic algorithms have

112 Chapter 4. Data Structures and Basic Algorithms

been developed.
Steiner trees arise in VLSI physical design in routing of multi-terminal nets.

Consider the problem of interconnecting two points in a plane using the shortest
path. This problem is similar to the routing problem of a two terminal net.
If the net has more than two terminals then the problem is to interconnect
all the terminals using minimum amount of wire, which corresponds to the
minimization of the total cost of edges in the Steiner tree. The global and
detailed routing of multi-terminal nets is an important problem in the layout
of VLSI circuits. This problem has traditionally been viewed as a Steiner
tree problem [CSW89, HVW85]. Due to their important applications, Steiner
trees have been a subject of intensive research [CSW89, GJ77, Han76, HVW85,
HVW89, Hwa76b, Hwa79, LSL80, SW90]. Figure 4.11(b) shows a Steiner tree
connecting vertices A, I, F, E, and G of Figure 4.11 (a).

The underlying grid graph is the graph defined by the intersections of the
horizontal and vertical lines drawn through the demand points. The problem
is then to connect terminals of a net using the edges of the underlying grid
graph. Figure 4.12 shows the underlying grid graph for a set of four points.
Therefore Steiner tree problems are defined in the Cartesian plane and edges
are restricted to be rectilinear. A Steiner tree whose edges are constrained
to rectilinear shapes is called a Rectilinear Steiner Tree (RST). A Rectilinear

4.3. Basic Algorithms 113

Steiner Minimum Tree (RSMT) is an RST with minimum cost among all RSTs.
In fact, the MST and RSMT have an interesting relationship. In the MST, the
cost of the edges are evaluated in the rectilinear metric. The following theorem
was proved by Hwang [Hwa76b].

Theorem 2 Let and be the costs of a minimum cost
rectilinear spanning tree and rectilinear Steiner minimum tree, respectively.
Then

As a result, many heuristic algorithms use MST as a starting point and
apply local modifications to obtain an RST. In this way, these algorithms can
guarantee that weight of the RST is at most of the weight of the optimal
tree [HVW85, Hwa76a, Hwa79, LSL80]. Consider the example shown in Fig-
ure 4.13. In Figure 4.13(a), we show a minimum spanning tree for the set of

114 Chapter 4. Data Structures and Basic Algorithms

4.3. Basic Algorithms 115

four points. Figure 4.13(b), (c), (d), and (e) show different Steiner trees that
can be obtained by using different layouts of edges of spanning tree. Layout
of edges should be selected so as to maximize the overlap between layouts and
hence minimize the total length of the tree. Figure 4.13(e) shows a minimum
cost Steiner tree.

4.3.2 Computational Geometry Algorithms

One of the basic tasks in computational geometry is the computation of the
line segment intersections. Investigations to solve this problem have continued
for several decades, with the domain expanding from simple segment inter-
sections to intersections between geometric figures. The problem of detecting
these types of intersections has practical applications in several areas, including
VLSI physical design and motion-planning in robotics.

4.3.2.1 Line Sweep Method

The detailed description of line sweep method and its many variations can
be found in [PS85]. A brief description of the line sweep method is given in
this section. The line segments are represented by their endpoints, which
are sorted by increasing x-coordinate values. An imaginary vertical sweep line
traverses the endpoint set from left to right, halting at each x-coordinate in
the sorted list. This sweep line represents a listing of segments at a given x-
coordinate, ordered according to their y-coordinate value. If the point is a left
endpoint, the segment is inserted into a data structure which keeps track of the
ordering of the segment with respect to the vertical line. The inserted segment
is checked with its immediate top and bottom neighbors for an intersection.
An intersection is detected when two segments are consecutive in order. If
the point is a right endpoint, a check is made to determine if the segments
immediately above and below it intersect; then this segment is deleted from
the ordering. This algorithm halts when it detects one intersection, or has
traversed the entire set of endpoints and no intersection exists. Consider the
example shown in Figure 4.15. The intersection between segments A and C will
be detected when segment B is deleted and A and C will become consecutive.
A description of the line sweep algorithm is given in Figure 4.14.

The sorting of endpoints can be done in time. A balanced
tree structure is used for T, which keeps the y-order of the active segments;
this allows the operations INSERT, DELETE, ABOVE, and BELOW to be
performed in time. Since the for loop executes at most times, the
time complexity of the algorithm is .

4.3.2.2 Extended Line Sweep Method

The line sweep algorithm can be extended to report all intersecting pairs
found among line segments. The extended line sweep method performs the
line sweep with the vertical line, inserting and deleting the segments in the
tree ; but when a segment intersection is detected, the point of intersection

116 Chapter 4. Data Structures and Basic Algorithms

4.4. Basic Data Structures 117

is inserted into the heap of sorted endpoints, in its proper x-coordinate
value order. The sweep line will then also halt at this point, the intersection
is reported, and the order of the intersecting segments in is swapped. New
intersections between these swapped segments and their nearest neighbors are
checked and points inserted into if this intersection occurs. This algorithm
halts when all endpoints and intersections in have traversed by the sweep
line, and all intersecting pairs are reported.

The special case in which the line segments are either all horizontal or ver-
tical lines was also discussed. A horizontal line is specified by its y-coordinate
and by the x-coordinates of its left and right endpoints. Each vertical line is
specified by its x-coordinate and by the y-coordinates of its upper and lower
endpoints. These points are sorted in ascending x-coordinates and stored in .

The line sweep proceeds from left to right; when it encounters the left
endpoint of a horizontal segment , it inserts the left endpoint into the data
structure . When a vertical line is encountered, we check for intersections
with any horizontal segments in , which lie within the y-interval defined by
the vertical line segment.

4.4 Basic Data Structures

A layout editor is a CAD tool which allows a human designer to create
and edit a VLSI layout. It may have some semi-automatic features to speed
up the layout process. Since layout editors are interactive, their underlying
data structures should enable editing operations to be performed within an
acceptable response time. The data structures should also have an acceptable
space complexity, as the memory on workstations is limited.

A layout can be represented easily if partitioned into a collection of tiles. A
tile is a rectangular section of the layout within a single layer. The tiles are not
allowed to overlap within a layer. The elements of a layout are referred to as
block tiles. A block tile can be used to represent p-diffusion, n-diffusion, poly
segment, etc. For ease of presentation, we will refer to a block tile simply as
a block. The area within a layout that does not contain a block is referred to
as vacant space. Figure 4.16 shows a simple layout containing several blocks.
Later, in the chapter we will introduce a method that partitions the vacant
space into a series of vacant tiles.

4.4.1 Atomic Operations for Layout Editors

The basic set of operations that give a designer the freedom to fully manipu-
late a layout, is referred to as the Atomic Operations. The following is the list
of atomic operations that a layout editor must support.

1.

2.

Point Finding: Given the coordinate of a point determine
whether lies within a block and, if so, identify that block.

Neighbor Finding: This operation is used to determine all blocks
touching a given block .

118 Chapter 4. Data Structures and Basic Algorithms

3.

4.

5.

6.

7.

8.

9.

10.

Block Visibility: This operation is used to determine all blocks visible,
in the and direction, from a given block . Note that this operation
is different from the neighbor finding operation.

Area Searching: Given a fixed area A, defined by its upper left corner
, the length , and the width determine whether A intersects with

any blocks . This operation is very useful in the placement of blocks.
Given a block to be placed in a particular area, we need to check if other
blocks are currently residing in that area.

Directed Area Enumeration: Given a fixed area A, defined by its
upper left corner , length , and width visit each block intersecting
A exactly once in sorted order according to its distance from a given side
(top, bottom, left, or right) of A.

Block Insertion: Block insertion refers to the act of inserting a new
block B into the layout such that B does not intersect with any existing
block.

Block Deletion: This operation is used to remove an existing block B
from the layout. In an iterative approach to placement, blocks are moved
from one location to another. This is done by inserting the block into a
new location and then deleting the block at its previous location.

Plowing: Given an area A and a direction , remove all blocks from
A by shifting each in direction while preserving ordering between
the blocks.

Compaction: Compaction refers to plowing or “compressing” of the
entire layout. If compaction is along the x-axis or y-axis then the com-
paction is called 1-dimensional compaction. When the compaction is
carried out in both x- and y-direction then it is called 2-dimensional
compaction.

Channel Generation: This operation refers to determining the vacant
space in the layout and partitioning it into tiles.

4.4. Basic Data Structures 119

4.4.2 Linked List of Blocks

The simplest data structure used to store the components of a layout is a
linked list, where each node in the list represents a block. The linked list
representation is shown in Figure 4.17. Notice that the blocks are not stored
in any particular order, as none was specified in the original description of
the data structure; however, it is clear that a sorted or self-organizing list will
improve average algorithmic complexity for some of the atomic operations. The
space complexity of the linked list method is where is the number of
blocks in the layout.

For illustration purpose, we now present an algorithm for neighbor finding
using the linked list data structure. Given a block , the neighbors of are
all the blocks that share a side with . Each block is represented in the list
by its location (coordinate of upper left corner), height, width, text to describe
the block, and a pointer to the next node (block) in the list. The algorithm
finds the neighbors on the right side of the given block, however, the algorithm
can be easily modified to find all the neighbors of a given block. The input to
the algorithm is a specific block , and the linked list of all blocks. A formal
description of the algorithm for neighbor finding is shown in Figure 4.18.

Linked list data structures are suitable for a hierarchical system since each
level of hierarchy contains few blocks. However, this data structure is not
suitable for non-hierarchical systems and for hierarchical systems with a large
number of blocks in each level. The major disadvantage of this structure is that
it does not explicitly represent the vacant space. However, the data structure
can be altered to form a new representation of the layout in which the vacant
space is stored as a collection of vacant tiles. A vacant tile maintains the same
geometric restrictions that are implied by the definition of a tile. Converting
the vacant space into a collection vacant tiles can be done by extending the
upper and lower boundaries of each block horizontally to the left and to the
right until it encounters another block or the boundary of the layout as shown
in figure 4.19. This partitions the entire area into a collection of tiles (block
and vacant), organizing the vacant tiles into maximal horizontal strips, thus
allowing the entire area of the layout to be represented in the linked list data
structure. We call this data structure the modified linked list.

120 Chapter 4. Data Structures and Basic Algorithms

4.4.3 Bin-Based Method

The bin-based data structure does not keep information pertaining to the
vacant space and does not create vacant tiles. In the bin-based system, a
virtual grid is superimposed on the layout area as shown in Figure 4.20. The
grid divides the area into a series of bins which can be represented using a
two-dimensional array. Each element in the array ((row,col)) contains all
the blocks that intersect with the corresponding bin. In Figure 4.20, (2,3)
contain blocks D,E,F,G, and H while (2,4) contain blocks G and H. The
space complexity for the bin-based data structure is , where denotes
the total number of bins and is the number of blocks.

Clearly, the bin-based data structure can be viewed as an augmented ver-
sion of the linked list data structure in which a time-space compromise has
been made to improve the average case performance on several of the atomic

4.4. Basic Data Structures 121

operations. However, it is easy to construct pathological examples which cause
the worst-case performance of the bin-based structure to degenerate to that of
the linked list. This is possible since the bin size is fixed, while the block size
may vary. If we insert blocks into the layout such that all the blocks fall in the
same bin, the performance of the bin-based data structure is equivalent to that
of the linked list for most atomic operations, and worse than the linked list in
the neighbor finding, area searching, and directed area enumeration operations,
since bins containing no blocks must be tested. The worst case complexity for
these operations is

As in the linked list data structure, we now present an algorithm to find the
neighbors of a given block. This algorithm finds the neighbors on the right side
of the given block. However, the algorithm can easily be extended to find all
the neighbors of a given block. The input to the algorithm is a specific block
A and the set of bins A formal description of the algorithm is shown in
Figure 4.21.

In general, the bin-based data structure is highly sensitive to the time-space
tradeoff. For instance, if the bins are small with respect to the average size
of a block, the blocks are likely to intersect with more than one bin, thereby
increasing storage requirements. Furthermore, many bins may remain empty,
creating wasted storage space. If the bins are too large the average case per-
formance will be reduced since the linked lists used to store blocks in each bin
will be very long. Obviously, the best case is when each bin contains exactly
blocks, and no block is stored in more than one bin.

Even though the bin-based method can be used to locate all blocks within an
area (bin), it does not allow for any representation of locality. In order to find
the block closest to another, it may be necessary to search other surrounding
bins, and in the worst case all the bins. Because the bin-based data structure
does not represent the vacant space, operations such as compaction are tedious
and time consuming.

122 Chapter 4. Data Structures and Basic Algorithms

4.4.4 Neighbor Pointers

Most operations in a layout system require local block information to perform
efficiently. Both the linked list and bin-based data structures do not keep
local information, such as neighboring blocks. To overcome this limitation,
the neighbor pointer data structure was developed. The neighbor pointer data
structure represents each block by its size (upper left hand corner, length, and
width) as well as the pointers to all of its neighbors. The space complexity
of the data structure is bounded by Figure 4.22 shows how neighbor
pointers are maintained for Block A.

The neighbor pointer data structure is designed to perform well on plowing
and compaction operations, unlike the linked list and bin-based structures.
Plowing operation can be performed easily since each block directly stores
information about its neighbors. In other words, for any block all blocks
affected by moving can be referenced directly. Since compaction is a form
of plowing, it can also be performed easily using the neighbor pointer data
structure. Figure 4.23, shows how the neighbor pointers of block A are updated
when block B is moved.

The primary disadvantage of neighbor pointers is that the data structure is
difficult to maintain. A simple modification to the layout may require all the
pointers in the data structure be updated. For instance, a plow operation may
modify the neighbors of each block and, in this case, updating the pointers
could take as much as time. Furthermore, block insertion and deletion
operations each take time. Since vacant space is not explicitly represented,

4.4. Basic Data Structures 123

channel generation cannot be performed without extensive modification to the
data structure.

4.4.5 Corner Stitching

Corner stitching is a radically different data structure used for IC layout
editing [Ous84]. Corner stitching is novel in the sense that it is the first data
structure to represent both vacant and block tiles in the design. As in the
neighbor pointer structure, information about the relative locations of blocks
is stored; however, unlike neighbor pointers, the corner stitch data structure
can be updated rapidly.

The corner-stitch data structuring technique provides various powerful op-
erations such as stretching, compaction, neighbor-finding, and channel finding.
These operations are possible in the order of the number of neighbors, which

124 Chapter 4. Data Structures and Basic Algorithms

in the worst case would be the order of the size of the layout; i.e., the number
of objects in the layout. The advantage of corner stitch data structure is that
it permits easy modification to the layout.

The two main features of the corner stitch data structure pertain to the
way in which it keeps track of vacant tiles and how the tiles are linked. To
partition the vacant space into a collection of vacant tiles, the vacant space
must be divided into maximal horizontal strips (as discussed in section 4.4.2).
Hence the whole layout is represented as tiles (vacant and block).

Tiles are linked by a set of pointers called corner stitches. Each tile contains
four stitches, two at its top right corner and two at the bottom left corner as
shown in Figure 4.24. The pointers at these two corners are sufficient to perform
all operations. The corner stitch method stores both the vertical and horizontal
pointers. Each tile also stores the same number of pointers, irrespective of the
number of neighbors it has. In this structure, vacant tiles can assume any
size, and this helps in naturally adapting to the variations in the size of the
blocks. In other words, a new block, created over a set of a vacant tiles, will
result in a number of vacant tiles to be split, thus enabling the layout to be
updated easily. The pointers in each of the four directions provide a type of
sorting similar to that of the neighbor pointers. Figure 4.25, shows how corner
stitches link the tiles of a layout. The stitches exceeding the boundary of the
layout have been omitted in the figure, but the data structure represents them
as NULL pointers.

The record structure used in this section to represent a tile is the same as
the one shown in Figure 4.17 with the exception that the single pointer used
to link the tiles will be replaced with the corner stitch pointers (rt, tr, bl, lb).
It should also be noted that we define the upper left corner of the layout to be
point (0,0).

In the following we present the various operations that can be performed
on a layout using the corner stitch data structure.

1. Point Finding: a point the following sequence of steps finds a path
through the corner stitches from the current point to traversing the
minimum number of tiles.

(1) The first step is to move up or down, using rt and lb pointers until

4.4. Basic Data Structures 125

a tile is found whose vertical range contains the destination point.

(2)

(3)

Then, a tile is found whose horizontal range contains the destination
point by moving left or right using tr or bl pointers.

Whenever there is a misalignment (the search goes out of the vertical
range of the tile that contains the destination point) due to the above
operations, steps 1 and 2 has to be iterated several times to locate
the tile containing the point.

This operation is illustrated in Figure 4.27. In worst case, this algorithm
traverses all the tiles in the layout. On an average though, tiles will
be visited. This algorithm handles the inherent asymmetry in designs by
readjusting the misalignments that occur during the search.

Figure 4.26 shows a formal description of the algorithm for point finding.
The input to the algorithm is a specific block B, and the coordinates of
the desired point .

126 Chapter 4. Data Structures and Basic Algorithms

2. Neighbor Finding: Following algorithm finds all the tiles that touch
a given side of a given tile. This is also illustrated in Figure 4.28.

(1) From the tr pointer of the given tile the algorithm starts traversing
using the lb pointer downwards until it reaches a tile which does not
completely lie within the vertical range of the given tile.

3. Area Search: Given an area, the following algorithm reports if there
are any blocks in the area. This is illustrated in Figure 4.29.

(2)

(3)

(4)

(1) First the tile in which the upper left corner of the given area is
located.

If the tile corresponding to this corner is a space tile, then if its right
edge is within the area of interest, the adjacent tile must be a block.

If a block was found in step 2, then the search is complete. If no
block was found, then the next tile touching the right edge of the
area of interest is found, by traversing the lb stitches down and then
traversing right using the tr stitches.

Steps 2 and 3 are repeated until either the area has been searched
or a block has been found.

4. Enumerate all Tiles: Given an area, the following algorithm reports
all tiles intersecting that area. This is illustrated in Figure 4.30.

(1) The algorithm first finds the tile in which the upper left corner of
the given area is located. Then it steps down through all the tiles
along the left edge, using the same technique as in area searching.

(2) The algorithm enumerates all the tiles found in step 1 recursively
(one tile at a time) using the procedure given in lines (R1) through
(R5).

(R1)

(R2)

(R3)

(R4)

(R5)

Number the current tile (this will generally involve some appli-
cation specific processing).
If the right edge of the tile is outside of the search area, then
the algorithm returns from the R procedure.
Otherwise, the algorithm uses the neighbor-finding algorithm to
locate all the tiles that touch the right side of the current tile
and also intersect the search area.
For each of these neighbors, if the bottom left corner of the
neighbor touches the current tile then it calls R to enumerate
the neighbor recursively (for example, this occurs in Figure 4.30
when tile 1 is the current tile and tile 2 is the neighbor).
Or, if the bottom edge of the search area cuts both the current
tile and the neighbor, then it calls R to enumerate the neighbor
recursively (in Figure 4.30, this occurs when tile 8 is the current
tile and tile 9 is the neighbor).

5. Block Creation: The algorithm given below creates a block of given
height and width on a certain given location in the plane. An illustration
of how the vacant tiles will change when block E is added to the layout
is given in Figure 4.31. Notice that the vacant tiles remain in maximal
horizontal strips after the block has been added.

(1) First of all the algorithm checks if a block already exists by using
the area search algorithm.

4.4. Basic Data Structures 127

(2)

(3)

(4)

(5)

It then finds the vacant tile containing the top edge of the area
occupied by new tile.

The tile found in step (2) is split using the horizontal line along the
top edge of the new tile. In addition, the corner stitches of the tiles
adjoining the new tile are updated.

The vacant tile containing the bottom edge of the new block is found
and split in the same fashion as in step (3) and corner stitches of
the tiles adjoining adjoining the new tile are updated.

The algorithm traverses down along the left side and right side of
the area of the new tile respectively, using the same technique in
step (3) and updates corner stitches of the tiles as necessary.

6. Block Deletion: The following algorithm deletes a block at a given
location in the plane. An illustration of how the vacant tiles will change
when block C is deleted from the layout is given in Figure 4.32. Notice
that the vacant tiles remain in maximal horizontal strips after the block
has been deleted.

(1)

(2)

(3)

First, the block to be deleted is changed to a vacant tile.

Second, using the neighbor finding algorithm for the right edge of
the deleted tile find all the neighbors. For each vacant tile neighbor,
the algorithm either splits the deleted tile or the neighbor tile so
that the two tiles have the same vertical span and then merges them
horizontally.

Third, find all the neighbors for the left edge of the deleted tile. For
each vacant tile neighbor the algorithm either splits the deleted tile
or the neighbor tile so that the two tiles have the same vertical span
and then merges them horizontally. After each horizontal merge, it

128 Chapter 4. Data Structures and Basic Algorithms

4.4. Basic Data Structures 129

performs a vertical merge if possible with the tiles above and below
it.

4.4.6 Multi-layer Operations

Thus far, the operations have been limited to those that concern only a single
layer. It is important to realize that layouts contain many layers. More im-
portantly, the functionality of the layout depends on the relationship between
the position of the blocks on different layers. For instance, Figure 4.33 shows
a simple transistor formed on two layers (polysilicon and n-diffusion) accom-
panied by a separate segment on the n-diffusion layer. If each layer is plowed
along the positive as shown in Figure 4.34, the original function of the
layout has been altered as a transistor has been created on another part of the
layout.

Design rule checking is also multilayer operation. In Figure 4.34, an illegal
transistor has been formed. Even though the design rules were maintained
while plowing on a single layer, the overall layout has an obvious design flaw.

130 Chapter 4. Data Structures and Basic Algorithms

If proper design rule checking is to take place, then the position of the blocks
on each layer must be taken into consideration.

4.4.7 Limitations of Existing Data Structures

When examining the different data structures described in this chapter, it is
easy to see that there is no single data structure that performs all operations
with good space and time complexity. For example, the linked list and bin-
based data structures are not suitable for use in a system in which a large
database needs to be updated very frequently. Although the simpler data
structures, like the linked list, are easy to understand, they are not suitable for
most layout editors. On the other hand, more advanced data structures, such
as the corner stitch, perform well where the simpler data structures become
inefficient. Yet, they do not allow for the full flexibility needed in managing
complicated layouts.

A limitation that all the data structures discussed share, is that they only
work on rectangular objects. For example, the data structures do not support
objects that are circular or L-shaped. New data structures, therefore, need to
be developed that handle non-rectangular objects. Also as parallel computation
is becoming more popular, new data structures need to be developed that can
adapt to a parallel computation environment.

4.4.8 Layout Specification Languages

A common and simple method of producing system layouts is to draw them
manually using a layout editor. This is done on one lambda grid using familiar
color codes to identify various systems layers. Once the layout has been drawn,
it can then be digitized or translated into machine-readable form by encoding
it into a symbolic layout language. The function of a symbolic layout language,
in its simplest form, is similar to that of macro-assembler. The user defines
symbols (macros) that describe the layout of basic system cells. The function
of the assembler for such a language is to scan and decode the statements and
translate them into design files in intermediate form. The effectiveness of such
languages could be further increased by constructing an assembler capable of
handling nested symbols. Through the use of nested symbols, system layouts
may be described in a hierarchical manner, leading to very compact descriptions
of structured designs.

Caltech Intermediate Form (CIF) is one of the popular intermediate forms
of layout description. Its purpose is to serve as a standard machine-readable
representation from which other forms can be constructed for specific output
devices such as plotters, video displays, and pattern-generation machines. CIF
provides participating design groups easy access to output devices other than
their own, enables the sharing of designs, and allows combining several designs
to form a larger chip. A CIF file is composed of a sequence of commands, each
being separated by a semi-colon (;). Each command is made up of a sequence
of characters which are from a fixed character set. Table 4.1 lists the command

4.4. Basic Data Structures 131

symbols and their forms.
A more formal listing of the commands is given in Figure 4.35. The syntax

for CIF is specified using a recursive language definition as proposed by [Wir77].
The notation used is similar to the one used to express rules in programming
languages and is as follows: the production rules use equals (=) to relate identi-
fiers to expressions; vertical bar (|) for or; double quotes (“ ”) around terminal
characters; curly braces ({ }) indicate repetition any number of times including
zero; square brackets ([]) indicate optional factors (i.e., zero or one repetition);
parentheses () are used for grouping; rules are terminated by a period (.).

The number of objects in a design and the representation of the primitive
elements make the size of the CIF file very large. Symbolic definition is a way
of reducing the file size by equating a commonly used command to a symbol.
Layer names have to be unique, which will ensure the integrity of the design
while combining several layers which represent one design.

CIF uses a right-handed coordinate system where increases to the right
and increases upward. CIF represents the entire layout in the first quadrant.
The unit of measurement of the distance is usually a micrometer Be-
low are several examples of geometric shapes expressed in CIF. Note that the
corresponding example correspond to the respective shape in Figure 4.36.

(a)

(b)

Boxes: A box of length 30, width 50, and which is centered at (15,25),
in CIF is B 30 50 15 25; (See Figure 4.36(a))

In this form the length of the box is the measurement of the side that is
parallel to the and the width of the box is the measurement of the
side that is parallel to the .

Polygons: Polygon with vertices at (0,0), (20,50), (50,30), and (40,0) in

132 Chapter 4. Data Structures and Basic Algorithms

4.4. Basic Data Structures 133

CIF is P 0 0 20 50 50 30 40 00; (See Figure 4.36(b))

For a polygon with sides, the coordinates of vertices must be specified
through the path of the edges.

(c) Wires: A wire with width 20 and which follows the path specified by
the coordinates (0,10), (30,10), (30,30), (80,30) in CIF is W 20 0 10 30
10 30 30 80 30; (See Figure 4.36(c))

For a wire, the width must be given first and then the path of the wire
is specified by giving the coordinates of the path along its center. For an
object to qualify as a wire, it must have a uniform width.

As shown by the representation of a polygon, CIF will describe shapes
that do not have Manhattan or rectilinear features. It is actually possible to
represent a box that does not have Manhattan features. This is done using
a direction vector. This eliminates the need for any trigonometric functions
such as sin, cos, tan, etc. It is also easy to incorporate in the box description.
The direction vector is made up two integer components, the first being the
component of the direction vector along the and the second being the
same along the . The direction vector (1 1) will rotate the box 45°
counterclockwise as will (2 2), (50 50), etc. The direction vector pointing to
the can be represented as direction (10). With this new information a
new descriptor can be added to box called the direction. Figure 4.37 shows a
box with length 25, width 60, center 80,40 and direction -20, 20. When using
direction, the length is the measure of the side parallel to the direction vector,
and width is the measure of the side perpendicular to the direction vector. The
direction vector is optional and if not used defaults to the positive .

B 25 60 80 40 -20 20;

To maintain the integrity of the layers for these geometric objects they
must be labeled with the exact name of the fabrication mask (layer) on which
it belongs. Rather than repeating the layers specified for each object, it is
specified once and all objects defined after it belong to the same layer.

134 Chapter 4. Data Structures and Basic Algorithms

4.5. Graph Algorithms for Physical design 135

Using CIF, a cell can be defined as a symbol by using the DS and DF
commands. If an instance of a cell is required, the call command for that cell
is used. The entire circuit is usually described as a group of nested symbols.
A final call command is used to instantiate the circuit.

One of the popular layout description language used in the industry is
GDSII.

4.5 Graph Algorithms for Physical design

The basic objects in VLSI design are rectangles and the basic problems in
physical design deal with arrangement of these rectangles in a two or three
dimensional space. The relationships between these objects, such as overlap
and distances, are very critical in development of physical design algorithms.
Graphs are a well developed tool used to study relationships between objects.
Naturally, graphs are used to model many VLSI physical design problems and
they play a very pivotal role in almost all VLSI design algorithms. In this
section, we will define various graphs which are used in modeling of physical
design problems.

4.5.1 Classes of Graphs in Physical Design

A layout is a collection of rectangles. Rectangles, which are used for routing,
are thin and long and the width of these rectangles can be ignored for the sake
of simplicity. In VLSI routing problems, such simple models are frequently
used where the routing wires are represented as lines. In such cases, one needs
to optimally arrange lines in two and three dimensional space. As a result,
there are several different graphs which have been defined on lines and their

relationships. Rectangles, which do not allow simplifying assumptions about
the width, must also be modeled. For placement and compaction problems,
it is common to use a graph which represents a layout as a set of rectangles
and their adjacencies and relationships. As a result, a graph may be defined to
represent the relationships between the rectangles. Thus we have two types of
graphs dealing with lines and rectangles. Complex layouts with non-rectilinear
objects require more involved modeling techniques and will not be discussed.

4.5.1.1 Graphs Related to a Set of Lines

Lines can be classified into two types depending upon the alignment with
axis. We prefer to use the terminology of line interval or simply interval for
lines which are aligned to axis. An interval is represented by its left and
right endpoints, denoted by and respectively. Given a set of intervals

we define three graphs on the basis of the different relationships
between them.

We define an overlap graph as

In other words, each vertex in the graph corresponds to an interval and an
edge is defined between and if and only if the interval overlaps with
but does not completely contain or reside within

We define a containment graph where the vertex set V is
the same as defined above and a set of edges defined below:

In other words an edge is defined between and if and only if the interval
completely contains the interval
We also define an interval graph where the vertex set V is

the same as above, and two vertices are joined by an edge if and only if their
corresponding intervals have a non-empty intersection. It is easy to see that

An example of the overlap graph for the intervals in Fig-
ure 4.38(a) is shown in Figure 4.38(b) while the containment graph and the
interval graph are shown in Figure 4.38(c) and Figure 4.38(d) respectively.
Interval graphs form a well known class of graphs and have been studied ex-
tensively [Gol80].

Overlap, containment and interval graphs arise in many routing problems,
including channel routing, single row routing and over-the-cell routing.

If lines are non-aligned, then it is usually assumed (for example, in channel
routing) that all the lines originate at a specific -location and terminate at a
specific -location. An instance of such a set of lines is shown in Figure 4.39(a).
This type of diagram is sometimes called a matching diagram.

Permutation graphs are frequently used in routing and can be defined by
matching diagram. We define a permutation graph where the

136 Chapter 4. Data Structures and Basic Algorithms

4.5. Graph Algorithms for Physical design 137

vertex set V is the same as defined above and a set of edges defined below:

An example of permutation graph for the matching diagram in Figure 4.39(a) is
shown in Figure 4.39(b). It is well known that the class of containment graphs
is equivalent to the class of permutation graphs [Gol80].

Two sided box defined above is called a channel. The channel routing prob-
lem, which arises rather frequently in VLSI design, uses permutation graphs to
model the problem. A more general type of routing problem, called the switch-
box routing problem, uses a four-sided box (see Figure 4.40(a)). The graph
defined by the intersection of lines in a switchbox is equivalent to a circle graph
shown in Figure 4.40(b). Overlap graphs are equivalent to circle graphs. Circle
graphs were originally defined as the intersection graph of chords of a circle,

can be recognized in polynomial time [GHS86].

4.5.1.2 Graphs Related to Set of Rectangles

As mentioned before, rectangles are used to represent circuit blocks in a
layout design. Note that no two rectangles in a plane are allowed to overlap.
Rectangles may share edges, i.e., two rectangles may be neighbors to each other.
Given a set of rectangles corresponding to a layout in a
plane, a neighborhood graph is a graph G = (V , E), where

The neighborhood graph is useful in the global routing phase of the design
automation cycle where each channel is defined as a rectangle, and two channels
are neighbors if they share a boundary. Figure 4.41 gives an example of a
neighborhood graph, where for example, rectangles A and B are neighbors in
Figure 4.41 (a), and as a result there is an edge between vertices A and B in
the corresponding neighborhood graph shown in Figure 4.41 (b).

Similarly, given a graph G = (V , E), a rectangular dual of the graph is a set
of rectangles where each vertex corresponds to
the rectangle and two rectangles share an edge if their corresponding
vertices are adjacent. Figure 4.42(b) shows an example of a rectangular dual
of a graph shown in Figure 4.42(a). This graph is particularly important in
floorplanning phase of physical design automation. It is important to note that
not all graphs have a rectangular dual.

4.5.2 Relationship Between Graph Classes

The classes of graphs used in physical design are related to several well known
classes of graphs, such as triangulated graphs, comparability graphs, and co-
comparability graphs, which are defined below.

138 Chapter 4. Data Structures and Basic Algorithms

4.5. Graph Algorithms for Physical design 139

An interesting class of graphs based on the notion of cycle length is triangu-
lated graphs. If is a cycle in G, a chord of C is an edge
e in E(G) connecting vertices and such that for any = 1,…, k.
A graph is chordal if every cycle containing at least four vertices has a chord.
Chordal graphs are also known as triangulated graphs. A graph G = (V, E)
is a comparability graph if it is transitively orientable. A graph is called a
co-comparability graph if the complement of G is transitively orientable.

Triangulated and comparability graphs can be used to characterize interval
graphs. A graph G is called an interval graph if and only if G is triangulated
and the complement of G is a comparability graph. Similarly, comparability
and co-comparability graphs can be used to characterize permutation graphs.
A graph G is called a permutation graph if and only if G is a comparability
graph and the complement of G is also a comparability graph.

The classes of graphs mentioned above are not unrelated, in fact, interval
graphs and permutation graphs have a non-empty intersection. Similarly the
classes of permutation and bipartite graphs have a non-empty intersection. On
the other hand, the class of circle graphs properly contains the class of permu-
tation graphs. In Figure 4.43 shows the relationship between these classes.

4.5.3 Graph Problems in Physical Design

Several interesting problems related to classes of graphs discussed above arise
in VLSI physical design. We will briefly state the definitions of these problems.

140 Chapter 4. Data Structures and Basic Algorithms

4.5. Graph Algorithms for Physical design 141

An extensive list of problems and related results may be found in [GJ79].

Independent Set Problem
Instance: Graph G = (V, E), positive integer

Question: Does G contain an independent set of size K or more, i.e., a subset
such that and such that no two vertices in are joined by

an edge in E ?
Maximum Independent Set (MIS) problem is the optimization version of the
Independent Set problem. The problem is NP-complete for general graphs and
remains NP-complete for many special classes of graphs [GJ79, GJS76, MS77,
Pol74, YG78]. The problem is solvable in polynomial time for interval graphs,
permutation graphs and circle graphs. Algorithms for maximum independent
set for these classes are presented later in this chapter.

An interesting variant of the MIS problem, called the -MIS, arises in var-
ious routing problems. The objective of the -MIS is to select a subset of
vertices, which can be partitioned into independent sets. That is, the se-
lected subset is -colorable.

Clique Problem
Instance: Graph G = (V , E), positive integer
Question: Does G contain a clique of size K or more, i.e., a subset
such that and such that every two vertices in are joined by an
edge in E ?
Maximum clique problem is the optimization version of the clique problem.
The problem is NP-complete for general graphs and for many special classes
of graphs. However, the problem is solvable in polynomial time for chordal
graphs [Gav72] and therefore also for interval graphs, comparability graphs [EPL72],
and circle graphs [Gav73], and therefore for permutation graphs.

The maximum clique problem for interval graphs arises in the channel rout-
ing problem.

Graph K-Colorability
Instance: Graph G = (V , E), positive integer

Question: Is G K- colorable, i.e., does there exist a function
such that whenever

The minimization of the above problem is more frequently used in physical
design of VLSI. The minimization version asks for the minimum number of
colors needed to properly color a given graph. The minimum number of colors
needed to color a graph is called the chromatic number of the graph. The
problem is NP-complete for general graphs and remain so for all fixed It
is polynomial for K = 2, since that is equivalent to bipartite graph recognition.
It also remains NP-complete for K = 3 if G is the intersection graph for straight
line segments in the plane [EET89]. For arbitrary K, the problem is NP-
complete for circle graphs. The general problem can be solved in polynomial
time for comparability graphs [EPL72], and for chordal graphs [Gav72].

142 Chapter 4. Data Structures and Basic Algorithms

As discussed earlier, many problems in physical design can be transformed
into the problems discussed above. Most commonly, these problems serve as
sub-problems and as a result, it is important to understand how these problems
are solved. We will review the algorithms for solving these problems for several
classes of graphs in the subsequent subsections.

It should be noted that most of the problems have polynomial time complex-
ity algorithms for comparability, co-comparability, and triangulated graphs.
This is due to the fact these graphs are perfect graphs [Gol80]. A graph
G = (V, E) is called perfect, if the size of the maximum clique in G is equal
to the chromatic number of G and this is true for all subgraphs H of G. Per-
fect graphs admit polynomial time complexity algorithms for maximum clique,
maximum independent set, among other problems. Note that chromatic num-
ber and maximum clique problems are equivalent for perfect graphs.

Interval graphs and permutation graphs are defined by the intersection of
different classes of perfect graphs, and are therefore themselves perfect graphs.
As a result, many problems which are NP-hard for general graphs are poly-
nomial time solvable for these graphs. On the other hand, circle graphs are
not perfect and generally speaking are much harder to deal with as compared
to interval and permutation graphs. To see that circle graphs are not perfect,
note that an odd cycle of five or more vertices is a circle graph, but it does not
satisfy the definition of a perfect graph.

4.5.4 Algorithms for Interval Graphs

Among all classes of graphs defined on a set of lines, interval graphs are
perhaps the most well known. It is very structured class of graphs and many
algorithms which are NP-hard for general graphs are polynomial for interval
graphs [Gol77]. Linear time complexity algorithms are known for recognition,
maximum clique, and maximum independent set problems among others for
this class of graphs [Gol80]. The maximal cliques of an interval graph can be
linearly ordered such that for every vertex the cliques containing
occur consecutively [GH64]. Such an ordering of maximal cliques is called a
consecutive linear ordering. An O(| V | + | E |) algorithm for interval graph
recognition that produces a consecutive linear ordering of maximal cliques is
presented in [BL76]. In this section, we review algorithms for finding maximum
independent set and maximum clique in an interval graph.

4.5.4.1 Maximum Independent Set

An optimal algorithm for computing maximum independent set of an interval
graph was developed by Gupta, Lee, and Leung [GLL82]. The algorithm they
presented is greedy in nature and is described below in an informal fashion.
The algorithm first sorts the end points in ascending order of their values.
It then scans this list from left to right (i.e., in ascending order of their values)
until it first encounters a right endpoint. It then outputs the interval having
this right endpoint as a member of a maximum independent set and deletes

4.5. Graph Algorithms for Physical design 143

all intervals containing this point. This process is repeated until there is no
interval left in the list. It can be easily shown that the algorithm produces a
maximum independent set in a interval graph and the time complexity of the
algorithm is dominated by sorting the intervals that is O(log). The time
complexity of the algorithm is thus O(log), where n is the total number of
intervals.

Theorem 3 Given an interval graph, the MIS can be found in time,
where n is the total number vertices in the graph.

In [YG87], an optimal algorithm for finding the maximum k-colorable sub-
graph in an interval graph has been presented. We present an outline of that
algorithm.

The set of the interval is processed from left to right in increasing order
of endpoints. For a vertex let denote its corresponding interval, having
a maximum k-colorable subgraph for a set of nodes already processed.
The next node v is added to if contains no clique with more
than k nodes, and is discarded otherwise.

It can be easily shown that this greedy algorithm indeed finds the optimal
k-colorable independent set in an interval graph. For details, refer to [YG87].

4.5.4.2 Maximum Clique and Minimum Coloring

Since interval graphs are perfect, the cardinality of a minimum coloring is
the same as that of maximum clique in interval graphs. The algorithm shown
in Figure 4.44 finds a maximum clique in a given interval graph. The input to
the algorithm is a set of intervals representing an interval
graph. Each interval is represented by its left end point and right end
point

In the algorithm shown in Figure 4.44, SORT-INTERVAL sorts the list of
end points of all the intervals and generates an array A[i] to denote whether

144 Chapter 4. Data Structures and Basic Algorithms

the endpoint at the position i in the sorted list is a left endpoint or right
endpoint. A[i] = L if the corresponding end point is a left endpoint. Note that
the algorithm finds the size of the maximum clique in a given interval graph.
However, the algorithm can easily be extended to find the maximum clique. It
is easy to see that the worst case complexity of the algorithm is where
n is the total number of intervals. The time complexity of the algorithm can
be reduced to O(n log n) by keeping track of the minimum of the right end
points of all the intervals. The left edge algorithm (LEA) described in detailed
routing (chapter 7) is a simple variation of the algorithm in Figure 4.44.

4.5.5 Algorithms for Permutation Graphs

The class of permutation graphs was introduced by Pnnueli, Lempel, and
Even [PLE71]. They also showed that the class of permutation graphs is tran-
sitive and introduced an algorithm to find the maximum clique [EPL72].
In [Gol80], Golumbic showed an O(n log n) time complexity algorithm for find-
ing the chromatic number in a permutation graph.

Permutation graphs are also a structured class of graphs similar to interval
graphs. Most problems, which are polynomial for permutation graphs, are also
polynomial for interval graphs. In this section, we present an outline of several
important algorithms related to permutation graphs.

4.5.5.1 Maximum Independent Set

The maximum independent set in a permutation graph can be found in
O(n log n) time [Kim90]. As mentioned before, permutation graphs can be
represented using matching diagrams as shown in Figure 4.39.

The binary insertion technique can be used on a matching diagram to find a
maximum independent set in a permutation graph. Given a permutation

of n numbers N = (1, 2 , . . . , n) corresponding to a permutation
graph, note that an increasing subsequence of P represents an independent set
in the permutation graph. Similarly, a decreasing subsequence of P represents
a clique in the permutation graph. Therefore, to find a maximum independent
set, we need to find a maximum increasing subsequence of P. It is necessary
to know the the relations of the positions of numbers in the permutation. A
stack is used to keep track of the relations. The algorithm works as follows:

The sequence N is scanned in increasing order. In the jth iteration, j is
placed on the top of the stack i whenever j does not intersect with the front
entries of the stack q, but intersects with the front entry of stack r, where

and i and m is the total number of stacks during jth
iteration. If j does not intersect with any of the front entries of the stacks
1, 2 , . . . , m, then the stack m + 1 is created and j is placed on top stack m + 1.
It is easy to see that the stack search and insertion can be done using binary
search in O(log n) time.

Once the numbers are placed in stacks, stacks can be scanned from bottom
up to get a maximum increasing subsequence. We illustrate the algorithm by

4.5. Graph Algorithms for Physical design 145

means of an example shown in Figure 4.45(a). Initially, the permutation P is
given as (10, 5, 1, 3, 12, 11, 4, 7, 6, 9, 2, 8). The top row is processed from left to
right. First 1 is placed on the stack 1. Then 2 is placed on stack 2, because
2 does not intersect with 1. After that the 3 goes on top of stack 2, since it
intersects with 2 but does not intersect with 1 on top of stack 1. The 4 is
placed in front of a new stack 3. Then the 5 intersects with all of the front
entries of all the stacks, thus 5 is placed in front of the stack 1. In this way, all
the numbers are placed in 5 stacks as shown Figure 4.45(b). Now the stacks
are scanned starting from stack 5 to stack 1. One number from each stack is
selected so that the numbers are in decreasing order. If 9 from stack 5, 7 from
stack 4, 4 from stack 3, 3 from stack 2, and 1 from stack 1 is selected then the
generated set {9, 7, 4, 3, 1} is a maximum independent set of the corresponding
permutation graph. Note the total number of stacks is equal to the chromatic
number of the permutation graph.

In [LSL90], Lou, Sarrafzadeh, and Lee presented a time com-
plexity algorithm for finding a maximum two-independent set in permutation
graphs. Cong and Liu [CL91] presented an time complexity

146 Chapter 4. Data Structures and Basic Algorithms

algorithm to compute a maximum weighted k-independent set in permutation
graphs where m is bounded by In fact, their algorithm is very general and
applicable to any comparability graph.

4.5.5.2 Maximum k-Independent Set

The complement of a permutation graph is a permutation graph. Hence,
MKIS problem in graph G is equivalent to maximum k-clique problem in
In this section, we discuss an time algorithm for finding the maximum
k-clique in a permutation graph presented by Gavril [Gav87]. In fact, this
algorithm is very general and applicable to any comparability graph.

The basic idea of the algorithm is to convert the maximum k-clique prob-
lem in a comparability graph into network flow problem. (See [Tar83] for an
excellent survey of network flow algorithms.) First a transitive orientation
is constructed for a comparability graph G = (V, E), resulting in a directed
graph A directed path in is also called as a chain. Note
that each chain in corresponds to a clique in G since G is a comparabil-
ity graph. Next, each vertex in V is split into two vertices. Assume that

Then each vertex corresponds to two vertices and
in a new directed graph There is a directed edge between
and for all A cost of -1 and capacity of 1 are assigned to the

edge for all In addition, there is a directed edge between
and if there exists a directed edge in A cost of 0 and capacity
of 1 are assigned to the edge Four new vertices s (source), t (sink),

and are introduced as well as the directed edges and for all
and are added. A cost of 0 and capacity of 1 are assigned

to the edge and A cost of 0 and capacity of k are assigned to
the edges and The graph so constructed is called a
network where and

Then the maximum k-clique problem in the graph G is equivalent to the
min-cost max-flow problem in the network The flow in a directed graph
has to satisfy the following.

1.

2.

The flow f(e) associated with each edge of the graph, can be assigned a
value no more than the capacity of the edge.

The net flow that enters a vertex is equal to the net flow that leaves the
vertex.

The absolute value of flow that leaves the source, e.g. is called
the flow of The min-cost max-flow problem in the directed graph is
to find the assignment of f(e) for each edge such that the flow of
is maximum and the total cost on the edges that the flows pass is minimum.
Notice that the capacity on the directed edge is k. Thus, the maximum
flow of is k. In addition, flow that passes or has value 1, since the
capacity on the directed edge is one for each of Note

4.5. Graph Algorithms for Physical design 147

that a flow in corresponds to a chain in The maximum flow in is
k, thus the maximum number of the chains in is k, and vice versa. The
absolute value of the cost on each flow is equal to the number of vertices on the
chain corresponding to the flow. Thus the minimum cost on all flows results in
maximum number of vertices in the chains in and hence maximum number
of vertices in the cliques in G.

An example of a permutation graph G is given in Figure 4.46(b). The
transitive orientation of G is given in Figure 4.46(c) while the network is
shown in Figure 4.46(d). The min-cost max-flow while k = 2 is highlighted
in Figure 4.46(d). The chains corresponding to the min-cost max-flow are
highlighted in Figure 4.46(c). The maximum 2-clique is {5, 6, 7} and {2, 4}.

The time complexity of the algorithm is dominated by the time complexity
of the algorithm to find the min-cost max-flow in a network which is
where n is the number of vertices in the graph [Law76]. The weighted version
of the MKIS problem can be solved by algorithm presented in [SL93].

148 Chapter 4. Data Structures and Basic Algorithms

4.5.6 Algorithms for Circle Graphs
Circle graphs are used for solving certain problems in channel routing and

switchbox routing. Circle graphs are not prefect and less structured than in-
terval and permutation graphs. Many problems, such as the maximum bi-
partite subgraph problem, which are polynomial for interval and permutation
graphs are NP-complete for circle graphs. However, there are still many prob-
lems that can be solved in polynomial time for circle graphs which are NP-
complete for general graphs. For example, polynomial time complexity algo-
rithms are known for maximum clique and maximum independent set prob-
lems on circle graphs [Gav73], as well as for the weighted maximum clique
problem [Hsu85], but the chromatic number problem for circle graphs remains
NP-complete [GJMP78]. In the following, we review the circle graph algorithms
used in VLSI design.

4.5.6.1 Maximum Independent Set

The problem of finding maximum independent set in a circle graph can also
be solved in polynomial time. In [Sup87], Supowit presented a dynamic pro-
gramming algorithm of time complexity for finding maximum indepen-
dent set in a circle graph.

Given is a set C of n chords of a circle, without loss of generality, it is
assumed that no two chords share the same endpoint. Number these endpoints
of the chords from 0 to 2n – 1 clockwise around the circle. Let G = (V, E)
denote a circle graph where ab is a chord}. Let denote the
subgraph of the circle graph G = (V, E), induced by the set of vertices

Let M(i, j) denote a maximum independent set of If then
is the empty graph and, hence The algorithm is an application
of dynamic programming. In particular, M(i, j) is computed for each pair i, j;

is computed before if To compute M(i, j), let k be
the unique number such that or If k is not in the range [i, j –1],
then and hence M(i, j) = M(i, j – 1). If k is in the range [i, j – 1],
then there are two cases to consider:

1.

2.

If then by definition of an independent set, M(i, j) contains
no vertices such that and

If then

Thus M(i, j) is set to the larger of the two sets M(i, j – 1) and
The algorithm is more formally stated in Figure 4.47.

4.5. Graph Algorithms for Physical design 149

Theorem 4 The algorithm MIS finds a maximum independent set in a circle
graph in time

4.5.6.2 Maximum k-Independent Set

In general a k-independent set can be defined as a set consisting of k disjoint
independent sets, and a maximum k-independent set (k-MIS) has the maximum
number of vertices among all such k-independent sets. Although, a MIS in
circle graphs can be found in polynomial time, the problem of finding a k-MIS
is NP-complete even for k = 2 [SL89a]. Since the problem has many important
applications in routing and via minimization described in the later chapters,
it is required to develop some provably good approximation algorithm for this
problem.

In [CHS93], Cong, Hossain, and Sherwani present an approximation al-
gorithm for a maximum k-independent set in the context of planar routing
problem in an arbitrary routing region. The problem is equivalent to finding a
maximum k-independent set in a circle graph. The approximation algorithm
for k = 2, was first presented by Holmes, Sherwani and Sarrafzadeh [HSS93]
and later extended to the case of k = 4 in [HSS91]. In this section, we present
the approximation result in the context of a circle graph.

Given a graph the algorithm finds k independent sets one
after another denoted by such that is a maximum indepen-
dent set in and is a maximum independent set in for 2
where is inductively defined as:

and and and

Clearly, the algorithm reduces the problem of k-MIS to a series compu-
tations of MIS in a circle graph. Since in circle graphs, the complexity of
computing 1-MIS is the total time complexity of this approximation
algorithm is

150 Chapter 4. Data Structures and Basic Algorithms

Consider the circle graph shown in Figure 4.48. Clearly, the 2-MIS of
the graph is {(1,3),(2,4)}. The maximum independent sets in the graph are
{(1,3),(2,4),(2,3)}. In the MKIS algorithm, the MIS is chosen randomly, and a
bad selection of a MIS ({(2, 3)} in this case) may not lead to an optimal 2-MIS
for the graph. If {(2,3)} is chosen then either we can choose 1 or 4. Thus,
the total number of nets chosen is three while the optimal has four nets. A
similar reasoning would show that the algorithm is non-optimal for the k-MIS
problem.

The algorithm is formally stated in Figure 4.49.
For any heuristic algorithm for k-MIS, the performance ratio of is

defined to be where is the size of the k-independent set obtained by
the algorithm and is the k-MIS in the same graph. The lower bound
on the performance ratio is established based on the following theorem.

Theorem 5 Let be the performance ratio of the algorithm MKIS for k-MIS.
Then,

Corollary 1 Given a circle graph G, MKIS can be used to approximate a
maximum bipartite set of G with a performance bound of at least 0.75.

4.6. Summary 151

It is easy to see that the function is a decreasing
function. Moreover,

where Therefore, we have

Corollary 2 For any integer k, the performance ratio of the algorithm MKIS
for k-MIS is at least

Although the approximation result presented above is for circle graphs, this
equally applicable to any class of graphs where the problem of finding MIS is
polynomial time solvable.

Another variation of the MIS problem in circle graphs is called k-density
MIS. Given a set of intervals, the objective of k-density MIS is to find an
independent set of intervals with respect to overlap property such that the
interval graph corresponding to that set has a clique of size at most k.

4.5.6.3 Maximum Clique

Given a circle graph G = (V, E), it is easy to show that for every vertex
the induced subgraph is a permutation graph, where,

For each maximum clique can be found using the algorithm presented for
maximum clique in a permutation graph. Let be the maximum clique in

then the maximum clique in G is given by for all It is
easy to see that the time complexity of this algorithm is

4.6 Summary
A VLSI layout is represented as a collection of tiles on several layers. A cir-

cuit may consists of millions of such tiles. Since layout editors are interactive,
their underlying data structures should enable editing operations to be per-
formed within an acceptable response time. Several data structures have been
proposed for layout systems. The most popular data structure among these is
corner stitch. However, none of the data structures is equally good for all the
operations. The main limitation of all the existing data structures is that they
only work on rectangular objects. In other words, the data structures do not
support any other shaped objects such as circular, L-shaped. Therefore, de-
velopment of new data structure is needed to handle different shaped objects.

152 Chapter 4. Data Structures and Basic Algorithms

Also, as parallel computation becomes practical, new data structures need to
be developed to adapt to the parallel computation environment.

Due to sheer size of VLSI circuits, low time complexity is necessary for
algorithms to be practical. In addition, due to NP-hardness of many problems,
heuristic and approximation algorithms play a very important role in physical
design automation.

Several special graphs are used to represent VLSI layouts. The study of
algorithms of these graphs is essential to development of efficient algorithms
for various phases in VLSI physical design cycle.

4.7 Exercises

1.

2.

3.

4.

5.

Design an algorithm to insert a block in a given area using the modified
linked list data structure. Note that you need to use area searching
operation to insert a block and a modified linked list to keep track of the
vacant tiles.

Design an algorithm to delete a given block from a given set of blocks
using modified linked list data structure. Note that once a block is deleted
the area occupied by that block becomes vacant tile and the linked list
must be updated to take care of this situation.

Design algorithms using a linked list data structure to perform the plow-
ing and compaction operations.

Solve the problem 3 using a modified linked list.

The problem of connectivity extraction is very important in circuit ex-
traction phase of physical design. It is defined as follows. Given a set of
blocks in an area, let us assume that there is
a type associated to each circuit. For example, all the blocks can of one
type and all the vacant tiles could be of another type. Two blocks and

are called connected if there is a sequence of distinct blocks
of the same type such that

and is a neighbor of is a neighbor of
and so on and finally is a neighbor of

(a)

(b)

Design an algorithm using a modified linked list data structure to
extract the connectivity of two blocks.

Design an algorithm using a corner stitch data structure to find the
connectivity of two blocks.

†6. The existing data structure can be modified to handle layouts in a mul-
tilayer environment. Consider the following data items associated to a
tiles in a multilayer environment:

record Tile =

4.7. Exercises 153

coordinate;
height;
width;
type;
text;
layer;

end record

(a)

(b)

Design an algorithm to move the entire layout in one direction.

Following problem 5, find the connectivity of any two blocks in a
multilayer environment using corner stitch data structure.

7.

8.

Modify algorithm NEIGHBOR-FINDl to find all the neighbors of a given
block using a linked list data structure.

Modify algorithm NEIGHBOR-FIND2 to find all the neighbors of a given
block using bin-based data structure.

†9.

10.

11.

12.

Assume a layout system that allows 45° segments, i.e., the blocks could
be 45° angled parallelogram as well as rectangular. Modify the corner
stitch data structure to handle this layout system. Are four pointers still
sufficient in this situation ?

Given a family of sets of segments where is the
set of segments belonging to net on a layer.

Determine if there is a connectivity violation by developing an algorithm
which finds all such violations.

For the set of intervals shown in Figure 4.50, find maximum independent
set, maximum clique, and maximum bipartite subgraph in the interval
graph defined by the intervals.

For the matching diagram shown in Figure 4.51, find its permutation
graph. Find maximum independent set, minimum number of colors re-
quired to color it, and maximum bipartite subgraph in this permutation
graph.

154 Chapter 4. Data Structures and Basic Algorithms

13. For the switchbox shown in Figure 4.52, find maximum independent set,
maximum clique, and maximum bipartite subgraph in the permutation
graph defined by the matching diagram.

†14.

†15.

†16.

17.

†18.

19.

Prove that the algorithm MAX-CLIQUE correctly finds the size of the
maximum clique in an interval graph.

Improve the time complexity of the algorithm MAX-CLIQUE to O(n log n).
The algorithm should also be able to report a maximum clique.

Prove that the algorithm MIS for finding a maximum independent set in
circle graphs does indeed find the optimal solution.

Develop a heuristic algorithm for finding a maximum bipartite subgraph
in circle graphs.

Implement the approximation algorithm for finding a k-independent set in
circle graphs. Experimentally evaluate the performance of the algorithm
by implementing an exponential time complexity algorithm for finding a
k-independent set.

Develop an efficient algorithm to find a k-density MIS in circle graphs.

4.7. Exercises 155

20.

†21.

22.

23.

†24.

Steiner trees play a key role in global and detail routing problems. Con-
sider the following Single Trunk Steiner Tree problem. A single trunk
Steiner tree consists of a single horizontal line segment and all the points
are joined by short vertical line segments. An example of a single trunk
Steiner tree is shown in Figure 4.53.

Given a set of n points in a plane, develop an O(n) algorithm for the
minimum cost single trunk Steiner tree.

Prove that for n = 3, single trunk Steiner tree is indeed an optimal
rectilinear Steiner tree.

For n = 4, give an example which shows that single trunk Steiner tree is
not an optimal rectilinear Steiner tree.

Single trunk Steiner tree can be easily generalized to k-trunk Steiner
tree problem, which consists of k non-overlapping horizontal trunks. An
example of a two trunk Steiner tree is shown in Figure 4.54.

Develop an efficient algorithm for 2-trunk Steiner tree problem.

Does there exist an algorithm for the k-trunk Steiner tree problem,
for a small constant c?

156 Chapter 4. Data Structures and Basic Algorithms

†25.

†26.

27.

†28.

Implement Hadlock’s Algorithm for finding max-cut in a planar graph.

Prove that Hadlock’s algorithm is optimal by showing it deletes minimum
number of edges.

Given a set of rectangles in a plane, develop an efficient algorithm to
detect if any two rectangles intersect or contain each other.

Given a switch box, develop an efficient algorithm to find the minimum
diameter of rectilinear Steiner trees. The diameter of a tree is the maxi-
mum distance between any two of its vertices.

Bibliographic Notes
The paper by John Ousterhout on the corner stitch data structure [Ous84] gives
details of different algorithms used to manipulate a layout. The corner stitch
data structure has been extended in various ways to account for nonrectilinear
shapes and interaction of objects in different layers. In [Meh94] D. P. Mehta
presented a technique for estimating the storage requirements of the Rectan-
gular Corner Stitching data structure and the L-shaped Corner Stitching Data
Structure on a given circuit by studying the circuit’s geometric properties.

However, there are no efficient data structures to express the true three
dimensional nature of a VLSI layout. The details of CIF can be found in Mead
& Conway [MC79].

Cormen, Leiserson and Rivest [CLR90], present an in depth analysis of
graph algorithms. Tarjan [Tar83] provides excellent reference for graph match-
ings, minimum spanning trees, and network flow algorithms. Computational
geometry algorithms are discussed in detail by Preparata and Shamos [PS85].
The theory of NP-completeness is discussed in great detail in Garey and John-
son [GJ79].

General graph concepts have been described in detail in [CL86]. Algorithms
and concepts for the perfect graphs, interval graphs, permutation graphs, and
circle graphs can be found in [Gol80].

