
Chapter 7

Placement

Placement is a key step in physical design cycle. A poor placement consumes
larger areas, and results in performance degradation. It generally leads to a
difficult or sometimes impossible routing task. The input to the placement
phase is a set of blocks, the number of terminals for each block and the netlist. If
the layout of the circuit within a block has been completed then the dimensions
of the block are also known. Placement phase is very crucial in overall physical
design cycle. It is due to the fact, that an ill-placed layout cannot be improved
by high quality routing. In other words, the overall quality of the layout, in
terms of area and performance is mainly determined in the placement phase.

The placement of block occurs at three different levels.

1.

2.

System level placement: At system level, the placement problem is to
place all the PCBs together so that the area occupied is minimum. At the
same time, the heat generated by each of the PCBs should be dissipated
properly so that the system does not malfunction due to overheating of
some component.

Board level placement: At board level, all the chips on a board along
with other solid state devices have to be placed within a fixed area of the
PCB. All blocks are fixed and rectangular in shape. In addition, some
blocks may be pre-placed. The PCB technology allows mounting of com-
ponents on both sides. There is essentially no restriction on the number
of routing layers in PCB. Therefore in general, the nets can always be
routed irrespective of the quality of components placement. The objec-
tive of the board-level placement algorithms is twofold: minimization of
the number of routing layers; and satisfaction of the system performance
requirements. For high performance circuits, the critical nets should have
lengths which are less than a specified value and hence the placement al-
gorithms should place the critical components closer together. Another
key placement problem is the temperature profile of the board. The heat
dissipation on a PCB should be uniform, i.e., the chips which generate
maximum heat should not be placed closer to each other. If MCMs are

220 Chapter 7. Placement

3.

used instead of PCBs, then the heat dissipation problem is even more
critical, since chips are placed closer together on a MCM.

Chip level placement: At chip level, the problem can be either chip
planning, placement or floorplanning along with pin assignment. The
blocks are either flexible or fixed, and some of them may be pre-placed.
The key difference between the board level placement problem and the
chip level placement is the limited number of layers that can be used
for routing in a chip. In addition, the circuit is fabricated only on one
side of the substrate. This implies that some ‘bad’ placements maybe
unroutable. However, the fact that a given placement is unroutable will
not be discovered until routing is attempted. This leads to very costly
delays in completion of the design. Therefore, it is very important to
accurately determine the routing areas in the chip-level placement prob-
lems. Usually, two to four layers are used for routing, however, chips
with four or more layers routings are more expensive to fabricate. The
objective of a chip-level placement or floorplanning algorithm is to find
a minimum area routable placement of the blocks. In some cases, a mix-
ture of macro blocks and standard cells may have to be placed together.
These problems are referred to as Mixed block and cell placement and
floorplanning problems. At chip level, if the design is hierarchical then
the placement and floorplanning is also carried out in a hierarchical man-
ner. The hierarchical approach can greatly simplify the overall placement
process.

In the following sections, we will discuss the chip-level placement. The
placement problem for MCMs, which is essentially a performance driven Board
level placement problem, will be discussed in Chapter 14.

In this chapter, we will discuss placement problems in different design styles.
Section 7.1 discusses the problem formulation. Section 7.2 presents the classifi-
cation of placement algorithms. Remaining sections present various algorithms
for the placement problem.

7.1 Problem Formulation
The placement problem can be stated as follows: Given an electrical cir-

cuit consisting of fixed blocks, and a net list interconnecting terminals on the
periphery of these blocks and on the periphery of the circuit itself, construct
a layout indicating the positions of each block such that all the nets can be
routed and the total layout area is minimized. The objective for high perfor-
mance systems is to minimize the total delay of the system, by minimizing the
lengths of the critical paths. It is usually approximated by minimization of the
length of the longest net. This problem is known as the performance (timing)
driven placement problem. The associated algorithms are called performance
(timing) driven placement algorithms.

The quality of a placement is based on several factors:

7.1. Problem Formulation 221

1.

2.

3.

layout area.

completion of routing, and

circuit performance.

The layout area and the routability of the layout are usually approximated
by the topological congestion, known as rat’s nest, of interconnecting wires.
Consider the simple example in Figure 7.1. Two different placements for this
example are shown in Figure 7.2. The topological congestion in Figure 7.2(a)
is much less than that of in Figure 7.2(b). Thus, the placement given in Fig-
ure 7.2(a) can be considered more easily routable than the placement given in
Figure 7.2(b). In many cases, several objectives may contradict each other. For
example, minimizing layout area may lead to increased maximum wire length
and vice versa.

222 Chapter 7. Placement

Let us formally state the placement problem. Let be the
blocks to be placed on the chip. Each has associated with
it a height and a width Let be the set
of nets representing the interconnection between different blocks. Let

represent rectangular empty areas allocated for routing be-
tween blocks. Let denote the estimated length of net The
placement problem is to find iso-oriented rectangles for each of these blocks on
the plane denoted by such that

1.

2.

3.

4.

5.

Each block can be placed in its corresponding rectangle, that is, has
width and height

No two rectangles overlap, that is,

Placement is routable, that is, is sufficient to route all the
nets.

The total area of the rectangle bounding and is minimized.

The total wirelength is minimized, that is, is minimized. In the
case of high performance circuits, the length of longest net max

is minimized.

The general placement problem is NP-complete and hence, the algorithms
used are generally heuristic in nature.

Although the actual wiring paths are not known at the time of placement,
however, a placement algorithm needs to model the topology of the intercon-
nection nets. An interconnection graph structure which interconnects each net
is used for this purpose. The interconnection structure for two terminal trees
is simply an edge between the two vertices corresponding to the terminals. In
order to model a net with more than two terminals, rectilinear steiner trees
are used as shown in Figure 7.3(a) to estimate optimal wiring paths for a net.
This method is usually not used by routers, because of the NP-completeness of
steiner tree problem. As a result, minimum spanning tree representations are
the most commonly used structures to connect a net in the placement phase.
Minimum spanning tree connections (shown in Figure 7.3(b)) allow branching
only at the pin locations. Hence, the pins are connected in the form of min-
imum spanning tree of a graph. Complete graph interconnection is shown in
(Figure 7.3(c)). It is easy to implement such structures. However, this method
causes many redundant interconnections, and results in longer wire length.

The large number of objective functions can be classified into two categories,
net metrics and congestion metric. The net metrics deal with the assumption
that all the nets can be routed without interfering with other nets or with the
components. Usually the length of a net is important as the interconnection
delays depend on the length of the wire. The net metrics only quantify the
amount of wiring and do not account for the actual location of these wires.
The examples of this kind of objective functions are the total length of all nets
and the length of the longest net. The congestion metric is used to avoid the

7.1. Problem Formulation 223

buildup of many nets in a particular area leading to congestion. Example of
congestion metric is the number of nets that intersect with a routing channel.

The layout surface on which the circuit is to be placed is modeled into
either geometric or topological models. For the geometric model, the placement
algorithms tend to accept the layout area as a fixed constraint and tend to
optimize the interconnections. The geometric models are appropriate for design
styles where placement aspects such as size, shape and public pin positions do
not change during the layout process such as PCB design. On the other hand,
the placement systems which model the layout surface as a topological model
assume the constraint to be the completion of interconnections and optimize
the layout area. Topological models are appropriate for more flexible design
styles such as full custom designs.

7.1.1 Design Style Specific Placement Problems

Different design styles impose different restrictions on the layout and have
different objectives in placement problems.

224 Chapter 7. Placement

1.

2.

3.

Full custom: In full custom design style, the placement problem is the
packing problem concerned with placing a number of blocks of different
sizes and shapes tightly within a rectangular area. There is no restriction
on how the blocks can be placed within the rectangle except that no two
blocks may overlap. The primary objective is to minimize the total layout
area. The irregularity of the block shapes is usually the main cause of
unused areas. Since unused area increases the total area, the blocks must
be placed so as to minimize unused areas. The objective of minimizing
the layout area sometimes conflicts with the objective of minimizing the
maximum length of a net. Therefore, in high performance circuit design,
additional constraints on net lengths must also be considered.

Standard cells: The standard cell placement problem is somewhat
simpler than the full custom placement problem, as all the cells have
the same height. Cells are placed in rows and minimizing layout area
is equivalent to minimizing the summation of channel heights and mini-
mizing the width of the widest row. In order to reduce overall area, all
rows should have equal widths. The total area consists of area required
for the cell rows and the area required for routing or the channel area.
The routing area estimates, which determine the channel height, play a
key role in determining the overall area of the design. With the advent
of over-the-cell routing, in which the empty spaces over the standard cell
rows are used for routing, the channels in standard cells have almost dis-
appeared giving rise to channelless standard cell designs. Standard cells
are designed so the power and ground nets run horizontally through the
top and bottom of cells.

Gate arrays: As mentioned in the previous chapter, in case of gate
arrays, the partitioning of a circuit maps the circuit onto the gates of
the gate array. Hence the problem of partitioning and placement is es-
sentially the same in this design style. If partitioning does not actually
assign gate locations, then a placement algorithm has to be used to assign
subcircuits or gates to the slots on the gate array. Given a set of blocks

and set of slots assign each block
to a slot such that no two blocks are assigned to the same slot

and the placement is routable. For high performance designs, additional
constraints on net lengths have to be added.

Another situation, where gate array partitioning and placement may be
different, is when each ‘gate’ in the gate array is a complex circuit. In
this case, the circuit is partitioned such that each subcircuit is equivalent
to a ‘gate’. The placement algorithm is then used to find the actual
assignment. This happens to be the case in FPGAs and is discussed in
Chapter 13.

7.2. Classification of Placement Algorithms 225

7.2 Classification of Placement Algorithms
The placement algorithms can be classified on the basis of :

1.

2.

3.

the input to the algorithms,

the nature of output generated by the algorithms, and

the process used by the algorithms.

Depending on the input, the placement algorithms can be classified into two
major groups: constructive placement and iterative improvement methods. The
input to the constructive placement algorithms consists of a set of blocks along
with the netlist. The algorithm finds the locations of blocks. On the other
hand iterative improvement algorithms start with an initial placement. These
algorithms modify the initial placement in search of a better placement. These
algorithms are typically used in an iterative manner until no improvement is
possible.

The nature of output produced by an algorithm is another way of classifying
the placement algorithms. Some algorithms generate the same solution when
presented with the same problem, i.e., the solution produced is repeatable.
These algorithms are called deterministic placement algorithms. Algorithms
that function on the basis of fixed connectivity rules (or formulae) or deter-
mine the placement by solving simultaneous equations are deterministic and
always produce the same result for a particular placement problem. Some al-
gorithms, on the other hand, work by randomly examining configurations and
may produce a different result each time they are presented with the same
problem. Such algorithms are called as probabilistic placement algorithms.

The classification based on the process used by the placement algorithms
is perhaps the best way of classifying these algorithms. There are two impor-
tant class of algorithms under this classification: simulation based algorithms
and partitioning based algorithms. Simulation based algorithms simulate some
natural phenomenon while partitioning based algorithms use partitioning for
generating the placement. The algorithms which use clustering and other ap-
proaches are classified under ‘other’ placement algorithms.

7.3 Simulation Based Placement Algorithms
There are many problems in the natural world which resemble placement and

packaging problems. Molecules and atoms arrange themselves in crystals, such
that these crystals have minimum size and no residual strain. Herds of animals
move around, until each herd has enough space and it can maintain its predator-
prey relationships with other animals in other herds. The simulation based
placement algorithms simulate some of such natural processes or phenomena.
There are three major algorithms in this class: simulated annealing, simulated
evolution and force directed placement. The simulated annealing algorithm
simulates the annealing process which is used to temper metals. Simulated

226 Chapter 7. Placement

evolution simulates the biological process of evolution while the force directed
placement simulates a system of bodies attached by springs. These algorithms
are described in the following subsections.

7.3.1 Simulated Annealing
Simulated annealing is one of the most well developed placement methods

available [BJ86, GS84, Gro87, Haj88, HRSV86, LD88, Oht86, RSV85, RVS84,
SL87, SSV85]. The simulated annealing technique has been successfully used
in many phases of VLSI physical design, e.g., circuit partitioning. The detailed
description of the application of simulated annealing method to partitioning
may be found in Chapter 5. Simulated annealing is used in placement as an
iterative improvement algorithm. Given a placement configuration, a change to
that configuration is made by moving a component or interchanging locations
of two components. In case of the simple pairwise interchange algorithm, it
is possible that a configuration achieved has a cost higher than that of the
optimum but no interchange can cause a further cost reduction. In such a
situation the algorithm is trapped at a local optimum and cannot proceed
further. Actually this happens quite often when this algorithm is used on real
life examples. Simulated annealing avoids getting stuck at a local optimum by
occasionally accepting moves that result in a cost increase.

In simulated annealing, all moves that result in a decrease in cost are ac-
cepted. Moves that result in an increase in cost are accepted with a probability
that decreases over the iterations. The analogy to the actual annealing process
is heightened with the use of a parameter called temperature T. This parameter
controls the probability of accepting moves which result in an increased cost.
More of such moves are accepted at higher values of temperature than at lower
values. The acceptance probability can be given by where is the
increase in cost. The algorithm starts with a very high value of temperature
which gradually decreases so that moves that increase cost have lower proba-
bility of being accepted. Finally, the temperature reduces to a very low value
which causes only moves that reduce cost to be accepted. In this way, the
algorithm converges to a optimal or near optimal configuration.

In each stage, the configuration is shuffled randomly to get a new config-
uration. This random shuffling could be achieved by displacing a block to a
random location, an interchange of two blocks, or any other move which can
change the wire length. After the shuffle, the change in cost is evaluated. If
there is a decrease in cost, the configuration is accepted, otherwise, the new
configuration is accepted with a probability that depends on the temperature.
The temperature is then lowered using some function which, for example, could
be exponential in nature. The process is stopped when the temperature has
dropped to a certain level. The outline of the simulated annealing algorithm is
shown in Figure 7.4.

The parameters and functions used in a simulated annealing algorithm de-
termine the quality of the placement produced. These parameters and func-
tions include the cooling schedule consisting of initial temperature (init-temp),

7.3. Simulation Based Placement Algorithms 227

final temperature (final_temp) and the function used for changing the tem-
perature (SCHEDULE), inner_loop_criterion which is the number of trials at
each temperature, the process used for shuffling a configuration (PERTURB),
acceptance probability (F), and the cost function (COST). A good choice of
these parameters and functions can result in a good placement in a relatively
short time.

Sechen and Sangiovanni-Vincentelli developed Timber Wolf 3.2, which is
a standard cell placement algorithm based on Simulated Annealing [SSV85].
TimberWolf is one of the most successful placement algorithms. In this algo-
rithm, the parameters and functions are taken as follows. For the cooling sched-
ule, init_temp = 4000000, final-temp = 0.1, and SCHEDULE
where is a cooling rate depending on the current temperature is
taken relatively low when T is high, e.g. when the cooling process
just starts, which means the temperature is decremented rapidly. Then, in
the medium range of temperature, is taken 0.95, which means that the
temperature changes more slowly. When the temperature is in low range,
is again taken 0.8, the cooling procedure go fast again. In this way, there are a
total of 117 temperature steps. The graph for the cooling schedule is shown in
Figure 7.5. The value of inner_loop_criterion is taken according to the size of
the circuit, e.g., 100 moves per cell for a 200-cell circuit and 700 moves per cell
for a 3000-cell circuit are recommended in [SSV85]. The new configuration is
generated by making a weighted random selection from one of the following:

1.

2.

3.

the displacement of a block to a new location,

the interchange of locations between two blocks,

an orientation change for a block.

228 Chapter 7. Placement

The alternative 3 is used only when the new configuration generated by
using alternative 1 is rejected. The ratio of single block displacement to
pair wise interchange should be carefully chosen to give a best overall result.
An orientation change of a block is simply a mirror image of that block’s x-
coordinate. The cost function is taken as:

where cost1 is the weighted sum of estimate length of all nets, cost2 is the
penalty cost for overlapping, and cost3 is the penalty cost for uneven length
among standard cell rows.

Where, and are the horizontal and vertical spans of the min-
imum bounding rectangle of net . Horizontal and vertical weights (HW eight
and VW eight) are introduced so that each net can have different priority to
be optimized, e.g. critical nets can have higher priority, and one direction can
be favored over another direction. The quadratic function in cost2 is used to
penalize more heavily on large overlaps than small ones. Actually overlap is
not allowed in the placement. However, it takes large amount of computer time
to remove all overlapping. So, it is more efficient to allow overlapping during
intermediate placement and use a cost function to penalize the overlapping.

7.3. Simulation Based Placement Algorithms 229

 and are the actual row length and de-
sired row length for the th row, respectively. The factor is used so that the
minimum penalty for the difference in length of rows is factor.

The simulated annealing is one of the most established algorithms for place-
ment problems. It produces good quality placement. However, Simulated An-
nealing is computationally expensive and can lead to longer run times. There-
fore, it is only suitable for small to medium sized circuits.

7.3.2 Simulated Evolution

Simulated evolution (genetic algorithm) is analogous to the natural process
of mutation of species as they evolve to better adapt to their environment. It
has been recently applied to various fields. Readers are referred to the chapter
5 for the description of simulated evolution algorithm used in partitioning.

We use the example of gate array placement problem to explain the simu-
lated evolution algorithm. In gate array placement problem, the layout plane
is divided into slots. The problem of placing cells

where is to assign some to each such that no
two cells are assigned to the same slot. The algorithm starts with an initial set
of placement configurations, which is called the population. This initial place-
ment can be generated randomly. The individuals in this population represent
a feasible placement to the optimization problem and are actually represented
by a string of symbols. The symbols used in the solution string are called
genes. A solution string made up of genes is called a chromosome. A schema is
a set of genes that make up a partial solution. Simulated evolution algorithm
is iterative, and each iteration is called a generation. During each iteration the
individuals of the population are evaluated on the basis of certain fitness tests
which can determine the quality of each placement. Two individuals (corre-
sponding to two possible placement configurations) among the population are
selected as parents with probabilities based on their fitness. The better fitness
an individual has, the higher the probability that it will be chosen. The op-
erators called crossover, mutation and inversion, which are analogous to the
counterparts in the evolution process, are then applied on the parents to com-
bine ‘genes’ from each parent to generate a new individual called the offspring.
The offsprings are then evaluated and a new generation is then formed by in-
cluding some of the parents and the offsprings on the basis of their fitness in a
manner that the size of population remains the same. As the tendency is to se-
lect high fitness individuals to generate offsprings and the weak individuals are
deleted, the next generation tends to have individuals that have good fitness.
The fitness of the entire population improves over the generations. That means
the overall placement quality improves over iterations. At the same time, some
‘bad’ genes are inherited from previous generation even though the probability
of doing so is quite low. In this way, it is assured that the algorithm does not
get stuck at some local optimum. This is the basic mechanism of the algorithm
which results in a good placement. The three genetic operators that are used
for creating offsprings are discussed below.

230 Chapter 7. Placement

1.

2.

3.

Crossover : Crossover generates offsprings by combining schemata of
two individuals at a time. This could be achieved by choosing a random
cut point and generating the offspring by combining the left segment of
one parent with the right segment of the other. However, after doing so,
some blocks may be repeated while some other blocks may get deleted.
This problem has been dealt with in many different ways. The amount of
crossover is controlled by the crossover rate which is defined as the ratio
of the number of offspring produced in each generation to the population
size. The crossover rate determines the ratio of the number of searches in
regions of high average fitness to the number of searches in other regions.

Mutation: This operator is not directly responsible for producing
new offsprings but it causes incremental random changes in the offspring
produced by crossover. The most commonly used mutation is pair-wise
interchange. This is the process by which new genes which did not exist
in the original generation can be generated. The mutation rate is defined
as the percentage of the total number of genes in the population, which
are mutated in each generation. It should be carefully chosen so that it
can introduce more useful genes, and at the same time do not destroy the
resemblance of offsprings to their parents.

Selection: After the offspring is generated, individuals for the next
generation are chosen based on some criteria. There are many such se-
lection functions used by various researchers. In competitive selection all
the parents and offsprings compete with each other and the fittest indi-
viduals are selected so that the population remains constant. In random
selection the individuals for the next generation are randomly selected
so that the population remains constant. This could be advantageous
considering the fact that by selecting the fittest individuals the popula-
tion converges to individuals that share the same genes and the search
might not converge to a optimum. However, if the individuals are chosen
randomly, there is no way to gain improvements from older generation
to new generation. By compromising both methods, stochastic selection
makes selections with probabilities based on the fitness of each individual.

An algorithm developed by Cohoon and Paris [CP86] is shown in Figure 7.6.
The scoring function is chosen to account for total net lengths and to penalize
the placement with high wiring density in the routing channels. The score is
given by:

where

7.3. Simulation Based Placement Algorithms 231

where, is the number of nets intersecting horizontal (vertical) channel
is the mean of is the standard deviation of

The parent choosing function is performed alternatively as either selecting
parents with probabilities proportional to their fitness or selecting parents with
probabilities proportional to their fitness and an additional constraint such that
they have above average fitness. Two crossover operators can be used. One
selects a random cell and brings the four closest neighbors in parent 1
into neighboring slots in parent 2. At the same time, the cells in these slots
in parent 2 are pushed outward until vacant slots are found. The other one
selects a square of × cells from parent 1 where is a random number with
mean of 3 and variance of 1, and copy the square into parent 2. The result of
this copying would result in the loss of some cells. So, before copying, the cells
in parent 2 that are not part of square are being pushed outward into some
vacant slots.

One possible mutation function is to use a greedy technique to improve the

232 Chapter 7. Placement

placement cost. It selects a cell on a net and searches the cell on the
same net that is farthest from cell is then brought close to the cell
The cell which needs to be removed from that slot is pushed outward until a
vacancy is found.

Besides the implementation described above, there are other implementa-
tions, e.g. the genetic approach developed by Chan, Mazumder and Shahookar,
which uses a two-dimensional bitmap chromosome to handle the placement of
macro cells and gate arrays [CMS91]. In addition, the simulated evolution was
investigated in [CM89, KB87, Kli87, SM90a, SM90b].

7.3.3 Force Directed Placement
Force directed placement explores the similarity between placement problem

and classical mechanics problem of a system of bodies attached to springs.
In this method, the blocks connected to each other by nets are supposed to
exert attractive forces on each other. The magnitude of this force is directly
proportional to the distance between the blocks. According to Hooke’s law, the
force exerted due to stretching of the springs is proportional to the distance
between the bodies connected to the spring. If the bodies were allowed to
move freely, they would move in the direction of the force until the system
achieved equilibrium. The same idea is used for placing the blocks. The final
configuration of the placement of blocks is the one in which the system achieves
equilibrium.

In [Qui75], Quinn developed a placement algorithm using force directed
method. In this algorithm, all the blocks to be placed are considered to
be rectangles. These blocks are classified as movable or fixed. Let

be the blocks to be placed, and be the Cartesian coor-
dinates for Let
Let be the total force enacted upon by all the other blocks in the
-direction (-direction). Then, the force equations can be expressed as:

where constant between blocks and and
if The blocks connected by nets tend to move toward each other,

and the force between them is directly proportional to the distance between
them. On the other hand, the force model does not reflect the relationship
between unconnected blocks. In fact, the unconnected blocks tend to repel
each other. So, the above model should be modified to include these repulsion
effects. Since the formulation of the force equation in -direction is the same
as in -direction, in the following, only the formulation in -direction will be
discussed.

7.3. Simulation Based Placement Algorithms 233

where when and when R is the repulsion
constant directly proportional to the maximum of and inversely proportional
to .

In addition, it is also desirable to locate the center of all movable blocks
in some predetermined physical location (usually the geometric center of the
layout plane) so that the placement of blocks is balanced. Physically, it is
equivalent to have the forces acted upon the set of all movable blocks being
removed. Suppose there are movable blocks. Then, the force equations
become:

where is the total external force acted upon the set of all movable blocks
by the fixed blocks and

The placement problem now becomes a problem in classical mechanics and
the variety of methods used in classical mechanics can be applied. To solve for
the set of force equations, one of the methods is to set the potential energy
equal to and apply the unconstrained minimization method,
i.e., Fletcher-Reeves method [FR64], since the solution of the force equations
correspond to the state of zero potential energy of the system.

Besides the implementation presented by Quinn [Qui75], there are various
implementations [AJK82, Got81, HK72, HWA78, Oht86, QB79].

7.3.4 Sequence-Pair Technique

A packing of set of rectangles is nothing but non-overlapping placement of
rectangles. Sequence-pair is a representation of such a packing in terms of a
pair of module name sequences. In algorithms like simulated annealing solution
space is infinite and thus the algorithms stops the search for optimal solution
half-way and outputs the result. A finite solution space which includes an
optimal solution is the key for successful optimization. Sequence-pair technique
generates such a finite solution space. Murata et. al. proved in [MFNK96]
that searching the solution space generated by sequence-pair technique using
simulated annealing placement algorithm where move is change of the sequence-
pair, gives efficient rectangular packing.

A procedure called Gridding is used to encode a placement on a chip to a
sequence-pair. Let P be a packing of modules on chip C. In gridding proce-
dure non-intersecting,non-overlapping lines (lines doesn’t cross boundaries
of modules also) are drawn from south-west corner to north-east corner of the
chip and each line passes through one module diagonally. These lines can be
linearly ordered and this is of sequence-pair Second order of
sequence-pair can be obtained by drawing similar kind of lines from south-east
corner of the chip to north-west corner of the chip.

Given a sequence-pair one of the optimal solution under the con-
straint can be obtained in time by applying the longet path algorithm

234 Chapter 7. Placement

for vertex weighted directed acyclic graphs. A relation (LeftO f, RightO f,
BelowO f, AboveO f) between a pair of modules can be determined based on
the location of modules relative to each other. Prom the given sequence-pair

it is easy to generate such relations between modules of the chip. If
leftof means is left side of will be left side of if

is before in both the orders of sequence-pair.
In Figure 7.7 sequence-pair for the given placement is abcd, cdab.

LeftOf(a) = () , Modules that are after a in both the orders of sequence-pair.
RightOf(a) = (b),Modules that are before a in both the orders of sequence-pair.
AboveOf (a) = (), Modules that are before a in first order and after ’a’ in second
order of sequence-pair.
BelowOf(a) = (c,d), Modules that are after a in first order and before ’a’ in
second order of sequence-pair.

In Figure 7.8 horizontal and vertical constraint graphs are generated for the
sequence-pair abcd, cdab.

A directed and vertex-weighted graph called ”horizontal-constraint graph”
can be constructed using modules as verticies, module widths as weight of

vetices and leftof relation as edges of graph. Similarly using ”below” relation
and height of the block vertical-constraint graph can be generated. For
both the graphs source and sink vertices are out side the chip boundary with

weight of zero. Neither of these graphs contains any directed cycle. Module
pairs that have horizontal edges in do not overlap horizontally and similarly
module pairs that have vertical edges in do not overlap vertically. Thus no
two modules overlap each other in the resultant placement because any pair
of modules are either in horizontal or vertical relation. The width and height
of the chip is determined by the longest path length between the source and
the sink in and Since the width and height of the chip is indepen-
dently minimum, the resultant packing is the best of all the packings under the
constraint. The longest path length calculation on each graph can be done in
O(m2) time, proportional to the number of edges in the graph.

For a given chip C of modules sequence-pairs are possible and
each sequence-pair can be mapped to a packing in time, and atleast one
of the sequence-pair corresponds to the optimal packaging solution. When the
orientation of the block is not fixed then the size of the solution space increases
to

Authors of [MFNK96] applied this technique in a simulated annealing al-
gorithm where move is a change of the sequence-pair. They have used three
kinds of pair-interchanges.

1.

2.

Two module names in for placement optimization.

Two module names in both and for placement optimization.

7.3. Simulation Based Placement Algorithms 235

236 Chapter 7. Placement

3. Width and Height of a module for orientation optimization.

The initial sequence-pair is made as which corresponds to a linear
horizontal arrangement of modules. The temparature was decreased exponen-
tially. Operation 1 was performed with higher probability in higher tempera-
tures and operation 3 was performed with higher probability in lower temper-
atures to achieve better results.

The above technique can be extended to consider wire lengths also.

7.3.5 Comparison of Simulation Based Algorithms

Both the simulated annealing and simulated evolution are iterative and prob-
abilistic methods. They can both produce optimal or near-optimal placements,
and they are both computation intensive. However, the simulated evolution
has an advantage over the simulated annealing by using the history of previous
trial placements. The simulated annealing can only deal with one placement
configuration at a time. In simulated annealing it is possible that a good config-
uration maybe obtained and then lost when a bad configuration is introduced
later. On the other hand, the good configuration has much better chance to
survive during each iteration in simulated evolution since there are more than
one configurations being kept during each iteration. Any new configuration is
generated by using several configurations in simulated evolution. Thus, history
of previous placements can be used. However, the genetic method has to use
much more storage space than the simulated annealing since it has to memorize
all individual configurations in the population. Unlike simulated annealing and
simulated evolution, force directed placement is applicable to general designs,
such as full custom designs. The force-directed methods are relatively faster
compared to the simulated annealing and genetic approaches, and can produce
good placement.

7.4 Partitioning Based Placement Algorithms

This is an important class of algorithms in which the given circuit is re-
peatedly partitioned into two subcircuits. At the same time, at each level of
partitioning, the available layout area is partitioned into horizontal and verti-
cal subsections alternately. Each of the subcircuits so partitioned is assigned
to a subsection. This process is carried out till each subcircuit consists of a
single gate and has a unique place on the layout area. During partitioning, the
number of nets that are cut by the partition is usually minimized. In this case,
the group migration method can be used.

7.4.1 Breuer’s Algorithm

The main idea for Breuer’s algorithm [Bre77a, Bre77b] is to reduce the num-
ber of nets being cut when the circuit is partitioned. Various objective functions

have been developed for this method. These objective functions are as given
below.

1.

2.

3.

Total net-cut objective function: All the nets that are cut by the
partitioning are taken into account. This sum includes all nets cut
by both horizontal and vertical partitioning cut lines. Minimizing this
value is shown to be equivalent to minimizing the semi-perimeter wire-
length [Bre77a, Bre77b].

Min-max cut value objective function: In the case of standard cells
and gate arrays, the channel width depends on the number of nets that
are routed through the channel. The more the number of nets the larger
is the channel width and therefore the chip size. In this case the objec-
tive function is to reduce the number of nets cut by the cut line across
the channel. This will reduce the congestion in channels having a large
number of nets but at the expense of routing them through other chan-
nels that have a fewer number of nets or through the sparser areas of the
channel.

Sequential cut line objective function: A third objective function is
introduced to ease the computation of net cuts. Even though the above
two objective functions represent a placement problem more accurately,
it is very difficult to compute the minimum net cuts. This objective
function reduces the number of nets cut in a sequential manner. After
each partition, the number of nets cut is minimized. This greedy approach
is easier to implement, however, it may not minimize the total number of
nets cut.

In addition to the different objective functions, Breuer also presented several
placement procedures in which different sequence of cut lines are used.

1.

2.

Cut Oriented Min-Cut Placement: Starting with the entire chip,
the chip is first cut by a partition into two blocks. The circuit is also
partitioned into two sub circuits so that the net cut is minimized. All the
blocks formed by the partition are further partitioned by the second cut
line and this process is carried out for all the cut lines. This partitioning
procedure is sequential and easy to implement but it does not always
yield good results because of the following two reasons. Firstly, while
processing a cut line, the blocks created by the previous cut lines have
to be partitioned simultaneously. Secondly, when a cut line partitions a
block into two, the blocks to be placed in one of the partition might not
fit in the partition created by the cut line as it might require more space
than the block to be placed in the other partition (see Figure 7.9(a)).

Quadrature Placement Procedure: In this procedure, each region
is partitioned into four regions of equal sizes by using horizontal and
vertical cut lines alternatively. During each partitioning, the cutsize of
the partition is minimized. As it cuts through the center and reduces the

7.3. Partitioning Based Placement Algorithms 237

238 Chapter 7. Placement

3.

4.

cutsize, this process reduces the routing density in the center. Currently,
this is the most popular sequence of cut lines for min-cut algorithms (see
Figure 7.9(b)).

Bisection Placement Procedure: The layout area is repeatedly
bisected (partitioned into two equal parts) by horizontal cut lines until
each subregion consists of one row. Each of these rows is then repeatedly
bisected by vertical cut lines till each resulting subregion contains only
one slot thus fixing the positions of all blocks. This method is usually
used for standard cell placement and does not guarantee the minimization
of the maximum net cut per channel (see Figure 7.9(c)).

Slice Bisection Placement Procedure: In this method, a suitable
number of blocks are partitioned from the rest of the circuit and assigned
to a row, which is called a slicing, by horizontal cut lines. This process
is repeated till each block is assigned to a row. The blocks in each row
are then assigned to columns by bisecting using vertical cut lines. This
technique is most suitable for circuits which have a high degree of inter-
connection at the periphery since this procedure tends to reduce the wire

congestion at the periphery (see Figure 7.9(d)).

In any procedure described above, if the partitioning is to minimize the
number of nets cut by the partition, a group migration method can be used in
the partitioning process.

7.4.2 Terminal Propagation Algorithm

The partitioning algorithms partitioned the circuit merely to reduce the net
cut. Therefore, the partitioning algorithms cannot be directly used for place-
ment. This is illustrated in Figure 7.10. If the partitioning algorithm were
to be used directly, terminals A and B may move away from each other as a
result of partitioning, as shown in Figure 7.10(b). This not only increases the
net length but increases the congestion in the channels as well. Hence unlike
partitioning algorithms, placement algorithms which are based on partitioning
need to preserve the information regarding the terminals which are connected
and fall into two different partitions because of the cut. This can be done by
propagating a dummy terminal to the nearest point on the boundary, when
a net connecting two terminals is cut, as shown in Figure 7.10(c). When this
dummy terminal is generated, the partitioning algorithm will not assign the two
terminals in each partition, as shown in Figure 7.10(b), into different partitions
as this would not result in a minimum cut. This method called the terminal
propagation method was developed by Dunlop and Kernighan [DK85].

7.3. Partitioning Based Placement Algorithms 239

240 Chapter 7. Placement

7.5 Other Placement Algorithms

In this section, different kind of placement algorithms are described, which
are neither simulation based nor partition based. These include cluster growth,
quadratic assignment, resistive network optimization, and branch-and-bound
algorithms.

7.5.1 Cluster Growth

In this constructive placement algorithm, the bottom-up approach is used.
Blocks are placed sequentially in a partially completed layout. The seed or the
first block is usually selected and placed by the user. After the seed block is
placed, other blocks are selected and placed one by one to complete the layout.
The selection and placement techniques differentiate in various cluster growth
techniques.

In cluster growth algorithm, the block that is highly connected (have the
most connections) to the already placed blocks is selected to be placed. Then,
this block is placed either close to the block that it is highly connected to or
a exhaustive search is carried out for the best possible location for the block.
The outline of the cluster growth algorithm is shown in Figure 7.11.

The random constructive placement is a degenerate form of cluster growth.
In this case, the selection of blocks is made randomly and its position is also
fixed randomly. As this method does not take into account the interconnections
and other circuit features, in most of the cases, it does not produce a good
layout. This method is sometimes utilized to generate a basic layout for an
iterative placement algorithm.

7.5. Other Placement Algorithms 241

7.5.2 Quadratic Assignment

This method solves an abstract version of the gate array placement prob-
lem. It assumes that the blocks are points and have zero area. The cost of
connecting two blocks and given by is stored in a connection matrix.
The distance between slot k and slot l, given by is stored in a distance
matrix. The objective is to map the blocks onto slots such that the product
of connectivity and distance between the slots to which the blocks have been
mapped (which gives the net length), for all the blocks, is minimized. This
objective is equivalent to minimizing the total wire length for the circuit. This
placement problem has been formulated as a quadratic assignment problem by
Hall [Hal70]. If C is the connection matrix and is the sum of all elements in
the th row of C, then a diagonal matrix D can be defined as,

Let a matrix E be defined as E = D - C and and
be row vectors representing the – and – coordinates of

the desired solution. Hall proved that a nontrivial solution is obtained and the
objective function is minimized if the smallest eigenvalues of the matrix E are
chosen. The corresponding eigenvectors X and Y then give the coordinates of
all the blocks.

7.5.3 Resistive Network Optimization

The placement problem has been transformed into the problem of minimizing
the power dissipation in a resistive network by Cheng and Kuh [CK84]. The
objective function, which is the squared Euclidean wire length, is written in
a matrix form. This representation is similar to the matrix representation of
resistive networks. This method can include fixed blocks in the formulation.
Also, blocks with irregular sizes are allowed within cell rows. The algorithm
comprises of subprograms which are used for optimization, scaling, relaxation,
partitioning and assignment. The efficiency of the method comes from the fact
that it takes advantage of the sparsity of the netlist. Slot constraints are used
which guarantee the placement of blocks to be legal and each block is allocated
to one slot. There are upto constraints, where is the number of blocks.
The slot constraints are given by the equation

The algorithm maps the given circuit to a resistive network in which the
pads and fixed blocks are represented as fixed voltage sources. Using the slot
constraints the power dissipation in the circuit is minimized which causes the
blocks to cluster around the center of the chip. The higher order slot constraints
when applied cause the blocks to spread out. This step is called the scaling
step. A repeated partitioning and relaxation then aligns the blocks with the
slot locations.

242 Chapter 7. Placement

7.5.4 Branch-and-Bound Technique

The general branch-and-bound algorithm can be applied to the placement
problem. This method can be used for small circuits as it is a computationally
intensive method. The method assumes that all the feasible solutions and the
scores of these solutions are known. All these solutions make up a set called
the solution set. The solution can be systematically searched. The search can
be actually represented by a tree structure. The leaves of the tree are all the
solutions. The selection of a solution is equivalent to traversing a branch of
the tree and this step is called the branch step. If at any node in this tree a
solution yields a score which is greater than the currently known lowest, then
the search continues in another part of the decision tree. This step is the bound
step. Hence the algorithm actually prunes the decision tree which results in
reduced computation.

Consider a gate array with three slots and three blocks
At the first level of the tree, the root has three branches, each corresponding
to a different placement of in three different slots. All the child nodes of
the root will have two branches, each specifying two positions of in the
remaining two slots. Finally, all grand children of root will have exactly one
branch, specifying the slot for

The branch-and-bound algorithm traverses the tree and computes the cost
of the solution at any given node. The cost can simply be the total wire length
due to the placement of blocks upto that node. If this cost is higher than
another known placement, this subtree need not be explored.

7.6 Performance Driven Placement

The delay at chip level, which depends on interconnecting wires plays a
major role in determining the performance of the chip. As the blocks in a
circuit become smaller and smaller, the size of the chip decreases. As a result,
the delay due to the connecting wire becomes a major factor for high perfor-
mance chips. The placement algorithms for high performance chips have to
generate placements which will allow routers to route nets within the timing
requirements. Such problems are called performance driven placement and the
algorithms are called performance driven algorithms. The performance driven
placement algorithms can be classified into two major categories, one which
use the net-based approach and the other which use the path-based approach.
In path-based approach [Don90, JK89], the critical paths in the circuit are
considered and the placement algorithms try to place the blocks in a manner
that the path length is within its timing constraint. On the other hand, the
net-based approach [DEKP89, Dun84, Oga86, HNY87, MSL89], tries to route
the nets to meet the timing constraints on the individual nets instead of con-
sidering the paths. In this case, the timing requirement for each net has to be
decided by the algorithm. Usually a pre-timing analysis generates the bounds
on the netlengths which the placement algorithms have to satisfy while plac-
ing the blocks. Gao, Vaidya and Liu [GVL91] presented a algorithm for high

7.7. Recent Trends 243

performance placement. The algorithm consists of the following steps:

1.

2.

3.

4.

Upper bounds for the netlengths are deduced from the timing require-
ments which is a part of the input to the algorithm. Each net has a set of
such upper bounds. This provides the algorithm with maximum flexibil-
ity. The timing requirements are expressed by a set of linear constraints
which are solved using convex programming techniques. A new convex
programming algorithm is used for which the computational complexity
depends only on the number of variables rather than the number of linear
constraints.

A modified min-cut placement algorithm is used to obtain the placement
of the blocks. The upper bounds calculated in the previous step guide
the min-cut algorithm in placing the blocks. The min-cut algorithm,
is a modified version of the Fiduccia’s min-cut algorithm which tries to
minimize the number of nets whose lengths exceed their corresponding
upper bounds in addition to minimizing the size of the cutset.

The next step is to check whether all timing requirements are satisfied in
the placement generated by the modified min-cut placement algorithm.

In case all the timing requirements are met, the placement is valid and
is accepted. Otherwise the set of upper-bounds obtained in step 1 is
modified and the steps 2 and 3 are repeated. Most other algorithms
could not handle situations where the placement generated did not meet
the timing specifications.

7.7 Recent Trends

In Very Deep Sub-Micron(VDSM) designs, Placement problem is considered
much more than simply achieving the routability of the design and minimizing
the chip die area . Several other critical issues such as timing, zero clock-
skew, even power distribution are increasing the complexity of the placement
problem exponentially. Since placement phase is one of the early phases of the
IC physical design, lot of attention is paid to placement phase in IC design
cycle.

Timing driven placement is very critical to IC design and some of the
techniques to perform timing driven placement are discussed in
[RMNP97], [SS95], and [SKT97].

Algorithms to estimate the wire lengths are becoming part of placement
algorithms because accurate estimation of wire lengths help to fix the problems
in placement phase itself rather than in routing phase. Estimation of wirelength
during the placement stage helps to understand the routability of the design.
One of the techniques to estimate wire length is discussed in

1. Early Placement to obtain better Wire Load Models(WLM) for synthesis.
WLM is a parameter for the delay estimate for logic synthesis algorithm.

244 Chapter 7. Placement

2.

3.

4.

Placement for Cross talk avoidance.

Placement for Minimizing clock skew.

Placement for even power distribution.

7.8 Summary

Placement is a key step in physical design cycle. Several placement algo-
rithms have been presented. Simulated annealing and simulated evolution are
two most successful placement algorithm. Although these algorithms are com-
putationally intensive, they do produce good placements. Integer programming
based algorithms for floorplanning have been also been successful. Several al-
gorithms have been presented for pin assignment, including optimal pin assign-
ment for channel pin assignment problems. The output of the placement phase
must be routable, otherwise placement has to be repeated.

7.9 Exercises

1.

† 2.

† 3.

‡ 4.

Consider the following blocks.

represents the center to center
distance between blocks and then determine if these blocks can be
placed together so that the distances between the blocks are within their
specified values. The distances that are to be maintained are

Implement the Simulated Annealing algorithm. Consider the graph shown
in Figure 7.12. Each vertex represents rectangle whose dimensions are
specified in problem 1, the edges of the graph represent the connectiv-
ity of the blocks. Use the Simulated Annealing algorithm to generate a
placement.

For the placement obtained in problem 5, implement a pin assignment
algorithm which will reduce the total net length and minimize the max-
imum length of a net. Generate a complete routing for this placement.
The routing can be generated on an uniform grid and two nets can inter-
sect only when they are perpendicular to each other.

Implement the Simulated annealing algorithm for the general cell place-
ment problem.
Hint: Instead of exchanging a big block with a small block, a big block
can be exchanged with a cluster of small blocks.

7.9. Exercises 245

‡ 5.

6.

† 7.

‡ 8.

‡ 9.

 ‡ 10.

‡ 11.

‡ 12.

For a given placement, implement a pin assignment algorithm which will
rotate the pins on the blocks either in clockwise or anticlockwise direction
till the total net length is reduced. While rotating the pins on the blocks,
the order of these pins must be maintained.

For the blocks specified in problem 1 generate the integer program con-
straints to solve the placement problem. Consider some of the blocks as
flexible and solve the floorplanning problem using the integer program.

Implement a placement algorithm for high performance circuits which
takes into account path delays instead of net delays.

Modify the min-cut algorithm to incorporate the terminal propagation
scheme.

Develop Simulated Evolution algorithm for standard cells design.

Develop Simulated Evolution algorithm for full custom designs.

Several industrial libraries allow cells with different cell heights. This
leads to irregular shape channels. Suggest modifications required for ap-
plying the Simulated annealing algorithm to standard cells of uneven
heights.

Implement force directed placement algorithm for gate array design style.

Bibliographic Notes
A linear assignment algorithm for the placement problem has been discussed
in [Ake81]. Two partition/interchange processes are described in [Pat81] for

246 Chapter 7. Placement

solving the placement problem. The graph is partitioned into several smaller
graphs for initial placement in both the methods and finally interchange opti-
mization is carried out. The simulated annealing optimization method has been
adapted to the placement of macros on chips for full custom design in [JJ83].

A hierarchical placement procedure incorporating detailed routing and tim-
ing information has been discussed in The procedure is based on
the min-cut method. Global routing and timing analysis is carried out af-
ter every cut which guides the subsequent cell partitioning. [Leb83] discusses
an interactive program to get a good floorplan. It includes graphical output,
block and pad manipulation and a cost function for estimation of total wire
length. In [MM93] S. Mohan and P. Mazumder present a placement algo-
rithm in the distributed computing environment. In [SSL93] S. Sutanthavibul,
E. Shragowitz, and R. Lin present a timing-driven placement algorithms for
high performance VLSI chips. In [SDS94] Shanbhag, Danda, and Sherwani
presented an algorithm for mixed macro block and standard cell designs. Algo-
rithm for mixed macro-cell and standard-cell placement to minimize the chip
size and interconnection wire length is presented in [XGC97]. Quadratic place-
ment technique is revisited in [ACHY97].

