Chapter 10

Over-the-Cell Routing and
Via Minimization

The current trend in VLSI design is to develop high performance chips. The
main objective of physical design is satisfy the performance needs while mini-
mizing the die size. Historically, the gate delays limited the chip performance.
The developments in fabrication process technology in the past two decades
have resulted in a phenomenal decrease in feature sizes, and introduced addi-
tional metal layers for interconnections(routing). Deep sub-micron processes
with five to seven metal layers for interconnections are now available for de-
sign of high performance and high density chips. The number of devices in a
chip have increased from about a thousand devices in the early 70’s to over
twenty million devices now. The increase in the number of devices has led to a
significant increase in number of interconnections. Interconnect delays, which
were considered to be insignificant earlier, have now become comparable, if not
more prominent than the gate delays.

With the availability of five to seven metal layers for interconnections, three
dimensional routing techniques are necessary to satisfy the performance and
density goals. The number of metal layers provide the third dimension. There-
fore, for interconnect planning, routing volume needs to be considered, instead
of just the routing area. The space in all metal layers across the entire die,
both over active areas and in channels need to efficiently utilized for routing.
This concept was first introduced in standard cell designs. Several existing
channel routers can produce solutions only one or two tracks beyond optimum
for most channels. Despite this fact, as much as 10% of the area in a typical
layout was still consumed by routing. Considering a fixed placement, in view
of this ‘optimality’ of channel routers, further reduction is only possible if some
nets can be routed ‘outside’ the channel (as the area allocated for the standard
cells is inherently fixed by the circuit design). In particular, the metal layers
available over the cell rows can be used for the routing. This technique is called
over-the-cell routing. The over-the-cell routing style for standard cell designs
has become both practical and important as more and more metal layers are
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made available for routing.

Over-the-cell routing concept is used across the entire chip and it is not
feasible to design complex high performance microprocessor chips (100Mhz to
1GHz) without adopting over-the-cell routing techniques. This book describes
basic OTC routing algorithms for standard cell designs and advanced concepts
can be found in [SBP95].

After a chip is completely routed, the layout is functionally complete and
can be sent for fabrication. However, the layout is usually improved to reduce
the possibility of fabrication errors, reduce the total chip area and therefore,
improve performance. In most current technologies, two or more layers are
available for routing. Most of the existing routing algorithms use a large number
of vias to complete the routing. This is due to the fact that most routers use
a reserved layer model. However, vias are undesirable from fabrication as well
as circuit performance point of view and therefore, the number of vias should
be kept as small as possible.

Significant volume of research exists on techniques for reduction of the num-
ber of vias in a completed detailed routing by re-assigning the wire segments
to different layers. This kind of via minimization is called Constrained Via
Minimization (CVM). Via minimization has also been considered without the
restriction of completed routing. In this approach, the actual layout of wires
can be changed and thus offers more flexibility as compared to the CVM ap-
proach. This via minimization approach is called Unconstrained Via Minimiza-
tion (UVM) or Topological Via Minimization (TVM).

In this chapter, we discuss the problem of over-the-cell routing and via
minimization to improve detailed routing solutions. In Section 10.1, we discuss
the problem of over-the-cell routing. Both CVM and UVM problems have been
considered in Section 10.2.

10.1 Over-the-cell Routing

The total layout area in the standard cell design style is equal to the sum of
the total cell area and the total channel area. For a given layout, the total cell
area is fixed. Thus, the total area of a layout can only be reduced by decreasing
the total channel area. As several channel routers have been developed that
complete channel routing with the number of tracks very close to the channel
density, further improvement in the layout area is impossible if routing is done
only in channels.

Internal routing of cells is typically completed using one metal layer. There-
fore, the higher metal layers (M2 and M3) over-the-cell are un-utilized. The
area in M2 and M3 can be utilized for routing of nets in order to reduce the
channel height. As the number of layers allowed for routing increases, the over-
the-cell routing problem becomes important. Since the conventional channel
routing problem is known to be NP-hard [Szy85], and the over-the-cell channel
routing problem is a generalization of the conventional channel routing prob-
lem, it is easy to see that the over-the-cell channel routing problem is also
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NP-hard [GN87].

Several algorithms for over-the-cell routing have been presented, and the
technique has proven to be very effective [CL88, CPL93, HSS93, LPHLI1].
In the following, a review of algorithms for over-the-cell channel routing is
presented. We start by describing the physical constraints for over-the-cell
routing.

10.1.1 Cell Models

Based on the locations of the terminals there are four major classes of cell
models : Boundary Terminal Models (BTM), and the Center Terminal Models
(CTM), the Middle Terminal Model (MTM) and the Target Based Cell Model
(TBC). Each of these classes contain several cell models based on the variations
in other routing parameters, i.e., the number of metal layers and permissibility
of vias in over-the-cell areas.

¢ Boundary Terminal Model(BTM): This is the traditional cell model.
This was introduced when only two metal layers were available for rout-
ing. In BTM, there are two parallel horizontal diffusion rows, one for the
P-type transistors and the other for N-type transistors. The first metal
layer (M1) is used to complete connections which are internal to the cells.
The power and ground rails are in M2 layer, adjacent to each other, in
the center of the cell row. Terminal rows are available in all layers and are
located on the boundaries of the cells [HSS93]. This leaves a rectangu-
lar, over-the-cell routing area for each terminal row of the standard cells.
The number of tracks available for over-the-cell routing is determined by
the height of these rectangular areas and may vary depending on the cell
library used. The entire over-the-cell area may be used for routing in the
third metal (M3) layer. This model is used by most existing over-the-cell
routers [CPL93, HSS93, HSS91]. This class of cell models is referred to as
BTM or class of Boundary Terminal Models. (See Figure 10.1(a)). BTM
contains, 2BTM (2 layer process), 3BTM-V (3 layer process when vias
are not allowed in over-the-cell areas), and 3BTM+V (3 layer process
when vias are allowed in over-the-cell areas).

¢ Center Terminal Model(CTM): This class of cell models is quite dif-
ferent than BTM in terms of terminal location. In CTM, the terminals
are located in M2, in the middle of the cell. The power and ground rails
are in MI near the top and bottom cell boundaries respectively. Connec-
tions within the cell are completed in MI1. Thus, M2 is only blocked by
terminals, and M3 is completely unblocked (See Figure 10.1(b)). Over-
the-cell routers may use two rectangular regions (about thirteen tracks
wide) in M2 and M3.

e Middle Terminal Model(MTM: This model differs from the BTM
and CTM in terms of terminal locations. In MTM, the terminals are
located in two rows, one row is located k; tracks below the upper cell
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Figure 10.1: Existing Cell Models (a) BTM (b) CTM

boundary and another is located k3 tracks above the lower cell boundary.
As in CTM, in MTM, terminals are available only in M2 and the power
and ground rails are in MI near the top and bottom cell boundaries
respectively (See Figure 10.2). Both terminals in a column of a cell are
equi-potential. Intra-cell routing is completed in poly and MI, and does
not block M2. As opposed to two rectangular regions in CTM, over-the-
cell routers for MTM may use three rectangular regions in M2 and M3
as discussed below:

1. T area: k; track wide area between the upper cell boundary and
the upper terminal row,

2. C area: ks, track wide area between the lower terminal row and the
upper terminal row,

3. B area: k3 track wide area between the lower terminal row and the
lower cell boundary.

Target Based Cell (TBC): TBC is designed to effectively utilize the
over-the-cell areas for routing. The terminals are in the form of long
vertical strips in MI layer, called targets. The exact location of the in-
terconnection contacts on the targets is determined by the routing algo-
rithm. The power and ground lines are located in MI layer at the top
and bottom cell boundaries, respectively. The TBC cells have targets of
non-uniform heights and are placed arbitrarily, as shown in Figure 10.3.
Since the power and ground lines and the targets are located in MI layer,
the over-the-cell areas in M2 and M3 areas are completely unblocked.



10.1.  Over-the-cell Routing 373

[
T— VDD
I (k jtracks)
le @ 06 o o 976 @ © @ © 8 b 0 o @ '&‘
= (€ Area ik irack) ] e
¢ b d o o o g o 6 b6 o 0o o a0 ‘&I
| B Area (k jtracks)
— GND
Channel Area
e v
T Area (k jtracks) DD
| G- s S e e S et e T S e e B '€—|
C Area (k tracks) ‘l:m"al
Goiniidg D ce Cog D igiip g pia D gD "'rl
| B Area (k stracks)
e ——— GND

Figure 10.2: Middle Terminal Model (MTM)

' VDD

GND
Co —

Figure 10.3: Target Based Cell (TBC)

10.1.2 Two-Layer Over-the-Cell Routers

The two-layer routing problem essentially boils down to selection of two
planar sets of segments. One of them is routed in the upper over-the-cell area
and the other is routed in the lower over-the-cell region. The nets that are
not selected are routed in the channel area. In the following, we discuss two
algorithms for over-the-cell routing.

10.1.2.1 Basic OTC Routing Algorithm

In [CL90], Cong and Liu presented an algorithm for the over-the-cell channel
routing. It divides the problem into the following three steps:

1. routing over the cells,

2. choosing net segments in the channel, and
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Figure 10.4: A valid over-the-cell routing solution.

3. routing in the channel.

The first step is formulated in a very natural way as the problem of find-
ing a maximum independent set of a circle graph. Since the later problem
can be solved in quadratic time optimally, an efficient optimal algorithm is ob-
tained for the first step. Also, the second step is formulated as the problem of
finding a minimum density spanning forest of a graph. The minimum density
spanning forest problem is shown to be NP-hard, so, an efficient heuristic algo-
rithm is presented which produces very satisfactory results. A greedy channel
router [RF82] is used for the third step.

There are two routing layers in the channel, and there is a single routing
layer over-the-cells for inter-cell connections. Clearly, the over-the-cell routing
must be planar.

The first step of the over-the-cell channel routing problem is to connect ter-
minals on each side of the channel using over-the-cell routing area on that side.
The same procedure is carried out for each side (upper or lower) of the channel
independently. Let ¢;; denote the terminal of net /V; at column j. In a given
planar routing on one side of the channel, a hyperterminal of a net is defined to
be a maximal set of terminals which are connected by wires in the over-the-cell
routing area on that side. For example, for the terminals in the upper side of
the channel in Figure 10.4, {¢s4,%5,6,¢5,11} is a hyperterminal of net 5. {¢5 2}
is also a hyperterminal. Obviously, when the routing within the channel step
(the third step) is to be done, all the hyperterminals of a net need to be con-
nected instead of connecting all the terminals of the net, because the terminals
in each hyperterminal have already been connected in the over-the-cell routing
area. Intuitively, the fewer hyperterminals are obtained after routing over the
cells, the simpler the subsequent channel routing problem. Thus the first step
of the problem can be formulated as routing a row of terminals using a single
routing layer on one side of the row such that the number of hyperterminals is
minimum.

After the completion of the over-the-cell routing step, the second step is to
choose net segments to connect the hyperterminals that belong to the same
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Figure 10.5: Possible net segments for connecting two hyperterminals.

net. A net segment is a set of two terminals of the same net that belong to
two different hyperterminals. For example, for the two hyperterminals of net 1
on the opposite sides of the channel in Figure 10.5, there are four possible net
segments that can be used to connect these two hyperterminals (indicated by
dashed edges), while only one of them is needed to complete the connection.
Thus the second step of the problem is to choose net segments to connect all the
hyperterminals of each net such that the resulting channel density is minimum.

After the net segments for all the nets are chosen, the terminals specified
by the selected net segments are connected using the routing area in the chan-
nel. The problem is now reduced to the conventional two-layer channel routing
problem. A greedy channel router [RF82] is used for this step. Other two-layer
channel routers may also be used.

Net Selection for OTC Routing: The first step of the over-the-cell chan-
nel routing problem is to route a row of terminals using a single routing layer
on one side of the channel such that the resulting number of hyperterminals
is minimized. This problem is called the multi-terminal single-layer one-sided
routing problem (MSOP).

MSOP can be solved by a dynamic programming method in O(c?) time,
where c is the total number of columns in the channel. Given an instance I of
MSOP, let I(4,j) denote the instance resulting from restricting I to the interval
[4,5]. Let S(i,5) denote the set of all the possible routing solutions for I(3, ).

Let:
M E -1 d
( J SES( {k>2 ) k

where dg(S) is the number of hyperterminals of degree £ in S. If there is no
terminal at column 4, clearly, M(i,j) = M(i+ 1,j). Otherwise, assume that
the terminal at column { belongs to netn. Letzp,,Zp,,...,ZTn, be the column
indices of other terminals that belong to net n in interval (i,7). Then, it is
easy to verify that

M(i,j) = max(i + 1,7), max{M (t+1,m)+ M(n,5)}

It is easy to see that this recurrence relation leads to an O(c?) time dynamic
programming solution to MSOP.
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Figure 10.6: The connected component induced by net.

Channel Segment Selection: After the over-the-cell routing, a set of hy-
perterminals is obtained. The terminals in each hyperterminal are connected
together by over-the-cell connections. The next problem is to choose a set
of net segments to connect all the hyperterminals of each net such that the
channel density is minimized. This problem can be transformed to a special
spanning forest problem, as discussed below.

For an instance [ of the net segment selection problem, the connection
graph G= (V, E) is defined to be a weighted multi-graph. Each node in V
represents a hyperterminal. Let h; and he be two hyperterminals that belong
to the same net N;. For every terminal ¢;; in h; and for every terminal ¢;
in ho there is a corresponding edge (hy,h2) in E, and the weight of this edge
w((h1, hy)) is the interval [4, k] (assume that j < k, otherwise, it will be [k, j]).
Clearly, if h; contains p; terminals and h2 contains pe terminals, then there are
p1 X p2 parallel edges connecting h; and hz in G. Furthermore, corresponding
to each net in / there is a connected component in G.

For example, the connected component corresponding to net 3 in the ex-
ample in Figure 104 is shown in Figure 10.6. Given an instance / of the net
segment selection problem, since all the hyperterminals in the same net are to
be connected together for every net in /, it is necessary to find a spanning forest
of CG(I). Moreover, since the objective is to minimize the channel density, the
density of the set of intervals associated with the edges in the spanning forest
must be minimized.

Therefore, the net segment selection problem can be formulated as Mini-
mum Density Spanning Forest Problem (MDSFP). Given a weighted connection
graph G = (V, E) and an integer D, determine a subset of edges E' C E that
form a spanning forest of G, and the density of the interval set {w(e)|e € E'}
is no more than D.

In [CL90], it was shown that this problem is computationally hard.

Theorem 17 The minimum density spanning forest problem is NP-complete.

In view of NP-completeness of the MDSFP, an efficient heuristic algorithm
has been developed for solving the net segment selection problem [CL90]. The
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Figure 10.7: An example of the TRMPS problem

heuristic algorithm works as follows. Given an instance I of the net segment
selection problem, a connection graph G = (V, E) is constructed. For each edge
e € E, the relative density of e, called RD{e), is defined to be d{e)/d(E), where
d(e) is the density of the set of intervals which intersect with the interval w(e),
and d(E) is the density of the interval set {w(e)|e € E}. The relative density
of an edge measures the degree of congestion over the interval associated with
the edge. The algorithm repeatedly removes edges from E until a spanning
forest is obtained.

10.1.2.2 Planar Over-the-Cell Routing

In [DMPS94] Danda, Madhwapathy, Panyam and Sherwani presented an
algorithm to select a maximum planar subset of nets in M2 in BTM standard
cell designs.

Figure 10.7(b) shows the set of nets that are suitable for routing over the
cell row R;. In a HCVC (Horizontally Connected Vertically Connected) model
[CPL93], the main problem in two layer over the cell routing is to select a
maximum planar subset of nets which are suitable for routing in a single layer,
available over the cell rows. The remaining connections are completed in the
channel. Authors call this problem as the Two Row Maximum Planar Subset
(TRMPS) problem. Figure 10.7(c) shows the maximum planar subset of nets,
that can be routed over R;, which is an optimal solution, for the instance of the
TRMPS problem, shown in Figure 10.7(b). Notice, that the tracks are shared
between the top row nets and the bottom row nets, so as to efficiently utilize
the over-the-cell area.

The TRMPS problem, is formally defined as follows. Given two rows of
terminals 7 = {t1,t3,...,t2} and B = {b1,bs,...,br} and two sets of nets
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Nt = {(ti,t;) | tiyt; € T} and Ng = {(b;,b;) | li,l; € B}, where N7 U
Ng| = n,and k tracks between the two rows, find the maximum planar subset
Np C Nt UNp of the two sets in k tracks. Authors presented a dynamic
programming approach to solve this problem.

Let L denote the total number of columns in a cell row, numbered from
left to right. In BTM-HCVC, the terminals are located at the intersection
points of the upper or the lower horizontal boundaries of a cell row and the
vertical columns. If a terminal is not used by any net, then that terminal is
called a vacant terminal. If both the upper and lower terminals of a column
are vacant, then that column is called a vacant abutment. The total number
of tracks available in the OTC area of a cell row, for routing, is denoted by
k (cell height), and the tracks are numbered from top to bottom. Then, an
instance of the TRMPS problem can be formally represented as a 7-tuple Z =
(T,B,N7,Ng,k,n,L). An instance of the TRMPS problem is called as a
Canonical Instance, if there are no vacant abutments in that instance. If n is
the number of nets in a canonical instance Z, then the number of columns (L),
can be at most 2n. This is because, in the worst case, each column has at most
one vacant terminal, either in the top or the bottom terminal row.

Canonical instances with two terminal nets are considered as input to the
problem. A net is denoted by a pair of terminals. A net (t;,t;), where 1 <
i,j < L, is called a top net. Similarly, a net (b;,b;), where 1 <4,j < L, is called
a bottom net. span of a two terminal net is defined as the absolute difference
between the column numbers on which the terminals of the net are located.
For example, the span of the net N, = (t;,¢;), is given by,

span(Ng) =| i—J ’

A region R, of a cell row is defined as a rectangular region of the cell row,
containing the columns in the range [1,m], wherel < m < L. A net (¢;,t;) (or
(bi, b)), is said to be completely contained in the region Ry, if 1 <i,j < m.

Let T'(j) denotes the optimal TRMPS solution in a rectangular region R ;.
The T'(4) solution is computed for all 3, 1 < j £ L, using a dynamic program-
ming technique. Finally, the 7(L) solution gives the optimal solution, for a
given instance Z of the TRMPS problem. In order to compute the T'(j) solu-
tion, the region R; is partitioned into two or three sub regions. depending on
the existence of top nets and bottom nets, completely contained in R;, with
one of their terminals at column j, as shown in Figure 10.8.

Let No = (t;,t;) be the only net with a terminal at column j, and which
is completely contained in R;. In this case, R; is divided into an L-shaped
region R, and a rectangular region r which consists of a single row of terminals
(Figure 10.8(a)). The optimal T'(j) solution, may or may not contain Ny. If
Ng is included, then the T'(j) is summation of the optimal solutions in the
L-shaped region R and the rectangular region r, and the net N, itself. If N, is
not included, then the T'(5) solution is the same as the T'(j — 1) solution. The
maximum of the above two solutions, is taken as the optimal T'(j) solution.

Let No = (ti,t;) and Ng = (bm,b;) be the nets with terminals at column
4, and which are completely contained in R;. Then, the optimalT'(j) solution
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Figure 10.8: Schematic Overview of the Algorithm ALGO-TRMPS

may include

L.

None of the nets N, and Ng: In this case, the T'(j) solution is the
same as the 7'(7 — 1) solution.

Only the net N,: In this case, the T(j) solution can be computed as
shown in Figure 10.8(a).

Only the net Ng: In this case also, the T'(j) solution can be computed
as shown in Figure 10.8(a).

Both the nets N, and Ng: Inthis case, if i # m, then R; ispartitioned
into an L-shaped region R, and two rectangular regions r; and ry, which
consist of a single row of terminals (Figure 10.8(b)). If i = m, then R;
is partitioned into a rectangular region R, which consists of two rows of
terminals, and two rectangular regions r; and r2, which consist of a single
row of terminals (Figure 10.8(c)). Then, the T'(j) is simply summation
of the optimal solutions in the regions R, r1 and r2, and the nets N, and
Np.

The optimal T'(j) solution, is the maximum among all the above four solutions.

From the above discussion, it is clear that, the single row solutions and the
solutions in the L-shaped regions need to be computed, before computing the
two row solutions. Our algorithm consists of the following three phases.

L.

In the first phase, single row solutions of the terminal rows 7 and B,
are computed individually. Each single row solution of a terminal row,
is an (i,j,t) solution, where 1 < 7,5 < L and 1 <t < k. These solu-
tions are denoted as Sy(, j,t) and Sy(¢, 7,¢) for top and bottom terminals
respectively.

. In this phase, the maximum two row planar subset T'(j) for the given

terminal rows is computed, where 1 < j < L by using a dynamic program-
ming approach. Here, the S¢(3,7,t) and Sy(4,j,t) solutions, computed in
the first phase will be used. As described above, finding the T'(j) solution
also involves finding the maximum planar subset in L-shaped regions.
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3.The solution obtained in phase 2, gives the number of nets in the optimal
solution for a given instance of the TRMPS problem. In this phase, the
actual planar subset of nets in the optimal solution, is determined by
backtracking.

From a routing perspective, this problem is equivalent to assigning the
maximum number of intervals to & tracks such that, if interval (z,7) is assigned
to track f, then no interval assigned to tracks 1, 2,...,f — 1 should intersect
columns i and j. Let MIS(i,jf) denote the solution of the OFPR problem
resulting from restricting the intervals to be in the range of [¢, j] and allowing
f tracks for routing, where 1 < 4,7 < Land 1 < f < k. The (4,5, f) solu-
tion is computed using dynamic programming. Notice that, computation of
MIS(i,j,f) can be any of the following cases.

1. If j is vacant, then

MIS(i,5,f) = MIS(,5 -1, f)

2. There exists a net N, with terminals j and m but m & [¢, 7). Then,

3. There exists a net N, with terminals j and m such that m € [i, j), then
the following two cases are possible:
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(a) Excluding the net N, in the solution leads to
MIS(i, 3, f)=MIS(i,j-1,f)
(b) Including the net Ny in the solution results in
MIS(@,5,f)=MISG,m—-1,f)+ MIS(m+1,j-1,f-1)+1

As shown in Figure 10.9, if m € [i, ), one has to check if including N, will
lead to a better solution or not. Therefore,

MIS(m+1,j—1,f-1)+1if ' € [i, )}

The complexity of this algorithm is given by the following theorem, stated
in [CPL93].

Theorem 18 [CPL93] The two-terminal net OFPR problem can be solved in
O(kn?) time, where n is the number of nets and k is the number of available
tracks.

Using the above algorithm the maximum k-planar subsets S; and S, are
computed, for the top and bottom terminal rows respectively, and all the in-
termediate solutions are stored.

Since, computing the 7(j) solution, involves computing the solutions in
L-shaped regions, let us discuss a scheme to represent an L-shaped region.

Figure 10.10 shows two types of L. shaped regions. For instance, an L-shaped
region shown in Figure 10.10(a), is denoted by the 3-tuple (¢, j, f), where

1. i is the column number of the terminal ¢;, which is the rightmost corner
of the L-shaped region, in the top terminal row.

2. j is the column number of the terminal b;, which is the rightmost corner
of the L-shaped region, in the bottom terminal row.

3. fis the track, that forms part of the horizontal boundary of the L-shaped
region (See Figure 10.10(a)).

The maximum planar subset in the L-shaped region, shown in Figure 10.10(a),
is denoted by L(i,j,f). Following the same convention described above, the
inverted L-shaped region, shown in Figure 10.10(b) is denoted by (j,i,f), and
the solution in this region is denoted by L(j, i,f). The method of computing
solutions in L-shaped regions will be described later.

While computing the 7(j) solution in the rectangular region R;, the algo-
rithm deals with the following three cases.

Case 1: There exists a top net Ny = (¢;,t;), which is completely contained in
R; (Figure 10.11(a)).
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Case 2: There exists a bottom net Ng = (b;, b;), which is completely contained
in R;(Figure 10.11(b)).

Case 3: There exists a top net Ny = (#;,t;) , and a bottom net Ng = (b, b;),
which are completely contained in R; (Figure 10.11(c)).

Let us consider each of the above listed cases in detail.

Case 1: Depending on whether the net N, is in the optimal T'(j) solution,
or not, the algorithm has to deal with the following sub-cases.

Case 1(a): Excluding the net N, leads to
TG =TG-1)

Case 1(b): If the net N, is included, such that, it is assigned to a track
f, 1 £ f <k, then the following solution, which is denote by T"(j).

T'G)=8SG+1,5-1,f-1)+1+LGE-1,j-1,f+1)
By considering all possible track assignments, the track to which N, can

be assigned is found, so as to maximize the 7'(j) solution. Then, the T'(5)
solution obtained by choosing N,, which is denoted as 7 (5), is given by,

T"(j) = max{T'(j))

The optimal T'(j) solution will then be the maximum of the two solutions
obtained by including and excluding the net N,. Therefore,

T(j) = max{T(j — 1), T"(j)}

Case 2: This is symmetric to Case 1.
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Case 3: Here, the following three sub-cases are possible as shown in Fig-
ure 10.12.

Case 3(a): Span(Ny) > Span(Ng)
Case 3(b): Span(N,) < Span(Ng)
Case 3(c): Span(N,) = Span(Ng)

For each of the above three sub-cases, the following four solutions are
computed.

Wo(4): Two row solution of R;, which does not consist of the nets N,
and N, 8

W1(j): Two row solution of R;, which consists of only the net Ng
Wa(j): Two row solution of R;, which consists of only the net Ng

Wi2(j): Two row solution of R;, which consists of both the nets N,
and Ng

The maximum of Wy, W3, W, and Wy4 solutions is the optimal 7(j) so-
lution. If both the nets N, and Ng are included in the optimal solution
T(j), then a simple observation, regarding the track assignment of the
nets No and Ng, is stated in the following lemma.

Lemmal If No = (ti,t;) and Ng = (bm,b;), are two nets, which are
completely contained in R, and the optimal W12(j) solution has the net
Ny in track f1, and Ng in track fs such that 1 < fi < fo <k, then,

1. if span(Ny) > span(Ng), then, the solution in which, the net Ng is
assigned to a track fi + 1 is also an optimal W14(j) solution.
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Figure 10.12: Cases 3(a},(b} and (c)

2. if span(Na) < span(Ng), then, the solution in which, the net Ny is
assigned to a track fa — 1 is also an optimal Wy2(j) solution.

3. if span(Nq) = span(Ng), then, the solution in which, the net Ng is
assigned to a track fi1 + 1, and the solution in which, the net N, is
assigned to a track fo — 1 are also optimal W12(j) solutions.

Let us now consider the three sub-cases listed above, in detail.

Case 3(a): In this case, since span{Ny) > span(Ng), column [ is to the left
of column m (Figure 10.12(a)). The Wy(j) solution, in which both the
nets are excluded is given by,

Wo()) =TG- 1)

The W1(j) solution can be computed as follows. Suppose, the net N,
is assigned to track f, 1 < f < k, then, the following solution, which is
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called as Wi (5).
Wi()=S(l+1,7-1,f-)+1+L(~-1,j-1,f+1)

By trying all possible track assignments, the track to which N, can be
assigned is found, so as to maximize the Wi(j) solution. The Wi(j)
solution is given by,

Wi () = max{Wi()}

The W5(4) solution can be computed in a similar manner as W (j).

The Wi2(j) solution can be computed as follows. From lemma 1, it
is clear that in the optimal Wj2(j) solution, the nets N, and Ng are
assigned to adjacent tracks. Suppose, the net N, is assigned to track f,
and Np in track f + 1, then the following solution, which is called as W/,
is obtained.

Wih(§) = Ll-1m-1,f+1)+S(+1,5-1,f-1)
+ Sp(m+1,j-1,f+2)+2

The adjacent tracks, to which N, and Ng can be assigned is found, so as
to maximize Wi (j).

k=1 .
Wi = f?gf{wl,z(ﬂ)}

Then, the optimal 7)) solution will be the maximum of Wy, Wi, W, and
Wi, solutions. Therefore,

T(J) = ma‘x{WO(])7WI (])7 W2(]),W12(.7)}

Case 3(b): This is symmetric to Case 3(a).

Case 3(c): In this case, span(N,) = span(Ng). (Figure 10.12(c)). Here,

the Wy(j), W1(j) and Wa(j) solutions are the same as for Case 3(a) and
Case 3(b) However, the Wiy solution differs slightly. According to the
Lemma 1, the nets N, and N can be assigned to adjacent tracks (say f
and f + 1 respectively). Then the W/, will be

Wi(§) = TUI-1)+S(I+1,5-1,f-1)
+ Sl+1,7-1,f+2)+2

By trying all possible track assignments, one can find two adjacent tracks,
on which N, and Ng can be placed so as to maximize the Wi solution.
Therefore,

) k—1 )
Wi2(j) = max{W;,(j)}
Then the optimal solution is given by,

T(j) = max{Wo(j), W1(4), W2(5), W12(4)}
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11

Figure 10.13: The four cases of L-shaped solutions

Authors have the following theorems on the time complexity and optimality
of ALGO-TRMPS.

Theorem 19 The time complexity of ALGO-TRMPS is O(kn* x f(k,n)),
where n is the number of nets, k is the number of tracks available on over-the-
cell area and f(k,n) is the time to compute solution in each L-shaped region.

Theorem 20 Given an instance Z, of TRMPS problem, ALGO-TRMPS pro-
duces an optimal solution.

In the following paragraphs a detailed description of computing the maxi-
mum planar subset in an L-shaped region is given.

The L(i,j,f) solutions can be classified into the following four types de-
pending on the existence of a bottom net which is completely contained in R;,
with b; as one of its terminals.

Case 1: There is no bottom net, which is completely contained in R;, with b;
as one of its terminals (Figure 10.13(a)). In this case

L(Z,],f) = L(Z,] - 1af)



10.1.

Case

Case

Case

Over-the-cell Routing 387

2: There is a net Ng = (bm,b;), which is completely contained in R;,
such that, span{Ng) < (j — ), i.e., column m is to the right of column i,
as shown in Figure 10.13(b). Excluding the net Ng leads to,

Let us assume that, the L(i,j,f) solution that includes the net Npg, is
maximum, by assigning Ng to track f1, such that f; > f. Also notice
that the optimal L(i, j,f) solution cannot consist of any other nets, that
lie entirely in the L-shaped region, represented by (i,j, f), in the shaded
area shown in Figure 10.13(b). If any such net exists, then the L(i,j,f)
solution, which includes the net Ng, would not be planar. Therefore the
L(i,j,f) solution remains maximum, even if Ngis assigned to track fo,
such that f < f, < fi1. Therefore, one can assign Ng to track f +1. Now,
the L(i, j,f) solution, which includes Ng, consists of

1. the nets enclosed by Ng, which is the single sided solution Sy(m +
1,j—1Lk—-f-1).

2. the net Ny itself, and

3. The solution of the L-shaped region, represented by L(i — 1,m -1, f).

The L(i,J, f) solution that includes Ng, which is denoted as L'(3, j, f) is
given by

L'(i,5,f) = Sem+1,j-1,f+2)+1
+ L@E,m-1,f)

The optimal L(i,j,f) solution will be, the maximum of the solutions
obtained by excluding and including the net Ng. Therefore,

L(zajaf) = max{L(z,]—-l,f),L’(z,],f)}

3: There is a net Ng = (bm,b;), which is completely contained in R;,
such that, span(Ng) = (j — 1), i.e., column m and column i are the same,
as shown in Figure 10.13(c). This is similar to the Case 1, except that,
the L(i,j,f) solution, which includes the net Ng, consists of the single
row solution, in the region enclosed by Ng, the net Ng, and the two row
solution 7(i — 1). Therefore, the L(i, j,f) solution is given by,

L(la],f) = ma‘x{L(l)]_lvf))
Sp(i+1,j-1,f+2)+1+T(i-1)}
4: There is a net Ng = (bm,b;), which is completely contained in Rj,

such that, span(Ng) > (j — i), i.e., column m is to the left of column i,
as shown in Figure 10.13(d). Excluding the net Ng leads to,

L(Z)]yf) = L(Zvj - 17f)
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Suppose the net Ny is assigned to track fi, f < fi < k, then The L(, j, f)
solution, that includes the net Ng, in track fi, f < fi < k, denoted by
L'(i,7, f) is consists of

1. the nets enclosed by Ng, which is the single sided solution Sp(m +
1sj - 17k—f1 —1)'

2. the net Njg itself, and

3. The solution of the L-shaped region, represented by (i,m — 1,f).

Therefore the L(i,j, f) solution, which includes Ng in track fi is given
by

L’(i,jaf) = Sb(m+1vj—1ak_f1)+l
+ L{i,m-1,f)

By varying f from f + 1 to k, one can find the track, to which Ng can
be assigned, so as to maximize the L(i,j,f) solution. Then, the L(i,j,f)
solution by choosing Ng, which is denoted L"(i, j, f) is given by

L5 f) = méx (L5, f1)}

The optimal L(i,j,f) solution will be, the maximum of the solutions
obtained by excluding and including the net Ng. Therefore

L(i)j’f) = ma'x{L(i’j_l)f)’L”(i’j’f)}

The solutions in an inverted L-shaped region (where i > j), can also be
computed in a similar manner.

The computation of each 7(j) solution, involves the computation of solu-
tions in several L-shaped regions. Therefore, the worst case running time of
the algorithm ALGO-TRMPS, depends on the the number of L-shaped regions.
The following lemma is on the number of L-shaped regions.

Lemma 2 In canonical representation the number of L-shaped regions is O(kn?),
where k is the number of tracks and n is the number of nets.

Lemma 3 Each L(i,j,f) solution ,where 1 < ¢,j < L and1 < f < k, is
computed once and it takes constant time to compute the solution.

Theorem 21 The computation time of ALGO-LMPS is O(kn?), where k is
the number of tracks in a cell row, and n is the number of nets.

Theorem 22 Given an Instance I, ALGO-LMPS produces an optimal solu-
tion.
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Algorithm ALGO-TRMPS(N+,Ng,n,T,B,N,L)
Begin
Compute.SRM PS;();
Compute SRMPS,,();
for j=1toL
case(net_type(j)):
Type 1: TRMPS(j) =T1,;
Type 2: TRMPS(j) = T2;
Type 3: case(nets_at(j))
type a: TRMPS(j) = T3a
type b: TRMPS(j) =T3b
type c: TRMPS(j) = T3c
End(For)
Np=20
for j=Ltol
if(T(5-1) < T(j))
if(type = 1) Np = Np U N,
else if(type = 2) Np = Np U Ng
else if(type = 3) Np = Np UN, U Ng
End(if)
End(for)
End;

Figure 10.14: Algorithm ALGO-TRMPS

Theorem 23 Given an instance I, ALGO-TRMPS provides an optimal solu-
tion to the two row maximum planar subset problem.

Theorem 24 The complexity of the ALGO-TRMPS is O(kn?), where k is the
number of tracks available over-the-cell area and n is the number of nets.

Figure 10.14 presents the algorithm formally.

10.1.2.3 Over-the-Cell Routing Using Vacant Terminals

In [HSS93], Holmes, Sherwani and Sarrafzadeh presented a new algorithm
called WISER, for over-the-cell channel routing. There are two key ideas in
their approach: use of vacant terminals to increase the number of nets which
can be routed over the cells, and near optimal selection of ‘most suitable’ nets
for over the cell routing. Consider the example shown in Figure 10.15(a). Four
tracks are necessary using a conventional channel router or an over-the-cell
router. However, using the idea of vacant terminals, a two-track solution can
be obtained (see Figure 10.15(b)). Furthermore, it is clear that the selection of
nets which minimize the maximum clique, hAmax, in horizontal constraint graph
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Figure 10.15: Effect of using vacant terminals in layout.

is not sufficient to minimize the channel height. For example, channel height
for the routing problem shown in Figure 10.15 is determined strictly by vmax,
that is, longest path in the VCG (vertical constraint graph). Thus, the nets
which cause long paths in VCG should be considered for routing over the cells
to obtain a better over the cell routing solution.

An informal description of each of the six steps of algorithm is given below.

L.

Net Classification: Each net is classified as one of three types which,
intuitively, indicates the difficulty involved in routing this net over the
cells.

Vacant Terminal and Abutment Assignment: Vacant terminals
and abutments are assigned to each net depending on its type and weight.
The weight of a net intuitively indicates the improvement in channel
congestion possible if this net can be routed over the cells.

Net Selection: Among all the nets which are suitable for routing over
the cells, a maximum weighted subset is selected, which can be routed in
a single layer.

Over-the-Cell Routing: The selected nets are assigned exact geometric
routes in the area over the cells.

Channel Segment Assignment: For multi-terminal nets, it is possible
that some net segments are not routed over the cells, and therefore, must
be routed in the channel. In this step, ‘best’ segments are selected for
routing in the channel to complete the net connection.

Channel Routing: The segments selected in the previous step are
routed in the channel using a greedy channel router.
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The most important steps in algorithm WISER are net classification, va-
cant terminal and abutment assignment, and net selection. These steps are
discussed in detail below. Channel segment assignment is done using an algo-
rithm similar to the one presented in [CL90]. The channel routing completed
by using a greedy channel router [RF82].

Vacant Terminals and Net Classification: The algorithm WISER was
developed to take advantage of the physical characteristics indigenous to cell-
based designs. One such property is the abundance of vacant terminals. A
terminal is said to be vacant if it is not required for any net connection. Exam-
ination of benchmarks and industrial designs reveals that most standard cell
designs have 50% to 80% vacant terminals depending on the given channel. A
pair of vacant terminals with the same x-coordinate forms a vacant abutment
(see Figure 10.15). In the average case, 30% - 70% of the columns in a given
input channel are vacant abutments. The large number of vacant terminals
and abutments in standard cell designs is due to the fact that each logical ter-
minal (inputs and outputs) is provided on both sides of a standard cell but, in
most cases, need only be connected on one side. It should be noted that the
actual number of vacant terminals and abutments and their locations cannot
be obtained until global routing is completed.

To effectively utilize the vacant terminals and abutments available in a chan-
nel, algorithm WISER categorizes nets according to the proximity of vacant
terminals and abutments with respect to net terminals. Before classification,
each k-terminal net NN; is decomposed into k — 1 two-terminal nets at adja-
cent terminal locations. Let N; = {tp1,tp4,tta,tt6} be a four-terminal net.
The notation ¢, is used to refer to the terminal on row r (top or bottom) at
column z, Net N; is decomposed into 3 two-terminal nets: N;, = (to1,tp4),
Ni, = (tea,t14), and Nj; = (tsa,ts6). Each two-terminal net Nj = (trz,,trp2,)
where 71,73 € {t,b}, 21,22 € Z*, and z; < 2 is then classified as a type I,
type II or a type III net. The type of a net intuitively indicates the difficulty
involved in routing that net over the cell rows. In other words, type III nets
are hardest to route, while type I are easiest to route over the cells.

Definition 1 Net N; = (tr,z;,try2,) is a type I net if ry = ry, and at least
one of the terminals ty 4, and tr,g, is not vacant.

Definition 2 Net Nj = (tr,z,,tr,q2,) is a type Il net if the terminals ty 4, and
tre, are both vacant.

Definition 3 Net N;j = (tr,z,:troa,) is a type Il net if ri#rae, neither tyq,
nor tug, is vacant, and there exists at least one vacant abutment a within the
span of Nj, 1 < a < z3.

The three net types are illustrated in Figure 10.16. A typical channel of a
standard cell design contains about 44% type I nets, 41% type II nets, and
10% type III nets.

Observing that type I and type II nets constitute a majority of nets in the
channel, one might suggest that it is sufficient to consider only these net types
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Figure 10.16: Net types.

when routing over the cells rows. However, this is not the case, since removing
type III nets from the channel is critical in minimizing the length of the longest
path (vmax) in the vertical constraint graph.

The basic algorithm given in section 10.1.2.1 for over-the-cell channel rout-
ing attempts to minimize only the density due to horizontal constraint graph.
Since channel height depends on both hmax and Umax, it is clear that using
hmax as the sole criterion for selecting nets is not as effective. In WISER, a net
weightingfunction, F,, : N' = R*, which incorporates both the channel density
and VCG path length criteria is used to assess the suitability of a given net
for over-the-cell routing. The weight of a net N; = (t;,z,,tr,q,) is computed
based on the relative density of the channel in the interval [z;,z2] and the
ancestor and descendant weights of the net n. The relative density of net N;
can be computed by r4(N;) = %‘1\{9 where l4(N;) is the maximum of the local
densities at each terminal location ¢ where z; < t < 3. The ancestor weight
of a net N;, denoted by a{N;), is the length of the longest path from a node
t in the vertical constraint graph with zero in-degree to the node Nj, and the
descendant weight of N;, denoted by d(NN;), is the length of the longest path
from N; to a node s in VCG with zero out-degree. The general net weighting
function is given below:

p 1) | (@) + V)~ | a(;) = V) )

Umax Pmax

Fu(Ny) =

where k1 and k2 are experimentally determined constants. Since the weight of
a net N; indicates the reduction possible in Aynax and vmax if Nj is routed over
the cell rows, the ‘best’ set of nets to route over the cells is one with maximum
total weight.

Vacant Terminal and Abutment Assignment: After classification and
weighting, nets are allocated a subset of vacant terminals or vacant abutments,
depending on their type, to help define their routing paths in the area over the
cell rows. It should be noted that type I nets, which have both of their terminals
on the same boundary of the channel, can be routed in the area over the cells
without using vacant terminals as shown in Figure 10.17. Therefore, the vacant
terminal/abutment assignment problem is a matter of concern only for type II
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Figure 10.17: Routing of different net types.

and type III nets. For type II nets, the vacant terminals are ‘reserved’ for a
net. That is, only a particular net may use a particular vacant terminal; as a
result, vacant terminal assignment for type II nets is actually a net selection
problem. On the other hand, a type Il net may use any abutment within its
span and therefore vacant abutment assignment problem for type III nets can
be viewed as a matching problem.

Theorem 25 The vacant terminal assignment problem for type II nets is NP-
complete.

Using theorem 25, it can be shown that the problem of finding an optimal
routing using only k tracks in over-the-cell area is also NP-complete. However,
if the value of k is restricted to one (k = 1), the problem is reduced to finding
a maximum-weighted bipartite subgraph in an interval graph, which can be
solved in polynomial time. The complexity of the problem for a fixed k (k
being a small constant), however, for arbitrary k, the following result can be
established.

Theorem 26 The vacant abutment assignment problem for type Il nets is
NP-complete.

Corollary 3 The vacant terminal assignment problem for type Il nets remains
NP-complete when the number of tracks available over each cell row is restricted
to k.

In view of NP-completeness of the vacant abutment assignment problem for
type III nets, a greedy heuristic is used. This heuristic is based on certain nec-
essary conditions for the routability of a pair of type III nets. These necessary
conditions are depicted in Figure 10.18. These necessary conditions basically
check the planarity of pairs of nets. The formal description of the algorithm
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Figure 10.18: Necessary conditions.

is given in Figure 10.19. The main idea of this algorithm is to assign vacant
abutments to nets according to their weight. The ‘heaviest’ nets are considered
first. It is easy to see that the algorithm ASSIGN-ABUTMENTS produces a
feasible solutionin O(dn?) time.

Provably Good Algorithm for Net Selection: The net selection problem
can be stated as follows. Given a set A of of nets, select a maximum-weighted
subset of nets N’ C N, such that all the nets in N’ can be routed in the area
over the cell rows in planar fashion. Algorithm WISER uses a graph theoretic
approach to net selection. An overlap graph Go is constructed for intervals of
nets in set M. It is easy to see that net selection problem reduces to the problem
of finding a maximum-weighted bipartite subgraph Bmax in the overlap graph
Go. However, the density of the nets in each partite set must be bounded by a
constant k, which is the number of tracks available in the over the cell region.
The problem of computing Bmax is known to be NP-complete [SL89a]. As a
result, a provably good algorithm is used for net selection. This algorithm is
guaranteed to find a solution within 75% of the optimal.

Let P, Py denote the partite sets of the graph B. The vertices of P; corre-
spond to nets which will be routed over the upper row of cells, and the vertices
of P, represent nets which will be routed over the lower row of cells. It is easy
to see that there are several restrictions on assignment of vertices to partite
sets. For example, a vertex corresponding to a type I net N;, which has both
of its terminals on the upper cell row, may not be assigned to partite set P
because nets represented in P, are routed over the lower row of cells. On the
other hand, a vertex corresponding to a type I net IN; with terminals on the
lower cell row may only belong to Py. As noted earlier, vertices representing
type II nets may be assigned to either partite set since these nets can be routed
over either the upper or lower cell row. A type III net N; is partitioned into
two type I nets at the location of its designated abutment. Each of these nets
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Algorithm ASSIGN-ABUTMENTS()
begin
(* Sort nets of A3 according to weight, forming netlist 'L *)
L = Sort(N53)
(*ASSIGN|j] stores the abutment assigned to net N;, and
A(Nj) denotes the set of abutments within the span of net N; *)

(* Initialize array ASSIGNT] to zero *)
for eacha € A do
for each net N; = (tyz,,trs,) of N3 do
if (z; < a < z3) then .A(NJ) = A(Nj) Uf\rj;
fori=1to|AN3|do
for each a € A(L[i]) do
for each N; such that ASSIGN[j]#0 do
if (CND-OVLP(L[i],a,N;, ASSIGN[j]) = 1)
then ASSIGNI[i] = q;
break;
if (CND1-CONT(L[i],a, N;, ASSIGN[j]) = 1)
then ASSIGN|[i] = q;
break;
if (CND2-CONT(L[i],a, N;, ASSIGN[j]) = 1)
then ASSIGN|[i] = q;
break;
end.

Figure 10.19: Algorithm ASSIGN-ABUTMENTS.

is considered as a separate net in A’ and must be assigned to a fixed partite
set as in the case of other type I net. The basic idea of the algorithm is similar
to that of the algorithm MKIS in Chapter 3 and we call this algorithm FIS.
The lower bound of the algorithm is 75% of the optimal solution. However,
experimentally, the algorithm typically gives solutions which are at least 91%
of the optimal result and in the average case, the performance of the algorithm
is very close to the optimal solution (98% of the optimal solution).

Channel Segment Selection and Channel Routing: Channel segment
selection is same as that discussed in [CL90]. When channel segment assign-
ment is completed, a channel router is used to complete the connections within
the channel. For this purpose, a greedy channel router is used, which typically
achieves results at most one or two tracks beyond the channel density [RF82].

The formal description of algorithm WISER appears in Figure 10.20. On
PRIMARY I benchmark from MCNC, WISER produces a solution with the
total number of track equal to 206 as opposed to the solution with 187 tracks
produced by the greedy channel router and 449 track solution produced by the
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earlier OTC router.

10.1.3 Three-Layer Over-the-cell Routing

Holmes, Sherwani, and Sarrafzadeh [HSS91] introduced two models for
three-layer, over-the-cell channel routing in the standard cell design style. For
each model, an effective algorithm is proposed. Both of the algorithms achieve
dramatic reduction in channel height. In fact, the remaining channel height is
normally negligible. The novelty of this approach lies in use of ‘vacant’ termi-
nals for over-the-cell routing. For the entire PRIMARY 1 example, the router
reduces the routing height by 76% as compared to a greedy 2-layer channel
router. This leads to an overall reduction in chip height of 7%.

Wu, Holmes, Sherwani, and Sarrafzadeh [WHSS92] presented a three-layer
over-the-cell router for the standard cell design style based on a new cell model
(CTM) which assumes that terminals are located in the center of the cells
in layer M2. In this approach, nets are first partitioned into two sets. The
nets in the first set are called critical nets and are routed in the channel using
direct vertical segments on the M2 layer, thereby partitioning the channel into
several regions. The remaining nets are assigned terminal positions within
their corresponding regions and are routed in a planar fashion on M2. This
terminal assignment not only minimizes channel density but also eliminates
vertical constraints and completely defines the channel to be routed. In the
next step, two planar subsets of nets with maximum total size are found and
they are routed on M3 over-the-cell rows. The rest of the nets are routed in
the channel using a HVH router.

Terai, Nakajima, Takahashi and Sato [TTNS94] presented a new model
for over-the-cell routing with three layers. The model consists of two channels
and routing area over a cell row between them. The channel has three layers,
whereas the over-the-cell area has two layers available for routing. An over-the-
cell routing algorithm has been presented that considers over-the-cell routing
problem as a channel routing problem with additional constraints.

Bhingarde, Panyam and Sherwani [BPS93] introduced a new three-layer
model for, over-the-cell channel routing in standard cell design style. In this
model the terminals are arranged in the middle of the upper and the lower half
of the cell row. They develop an over-the-cell router, called MTM router, for
this new cell model. This router is very general in nature and it not only works
for two- and three- layer layouts but can also permit/restrict vias over-the-cell.

Bhingarde, Khawaja, Panyam and Sherwani [BKPS94] presented a hybrid
greedy router for the TBC model. The routing algorithm consists of two key
steps; terminal position assignment and 2-3-2 layer irregular boundary chan-
nel routing. An optimal O(KL) algorithm for terminal position selection is
presented. The algorithm determines exact terminal locations on each target
in the entire cell row. The routing environment for the TBC Router typi-
cally consists of a 3-layer channel area enclosed by two 2-layer non-uniform
boundary over-the-cell routing regions. The TBC router generates smaller lay-
outs for benchmarks, primarily due to smaller layout widths. For example,
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Algorithm WISER()
begin
(* PHASE 1: Net Decomposition and Classification *)
for each N; € N do
N'=N"U {.Nz = (t”'tr,;.'.l) !1" € {t,b},l <1<k
where i refers to the i** terminal of k-terminal net N; }
for each N; = (tr,2,,tr,z,) € N’ do
if (?“1 = ?“2) (* Type I nets *)
then N = Nj U {N;}
if (1 is vacant) and (73 is vacant) (* Type II nets *)
then Ay = Ny U {N;}
(* Type III nets *)
if (r1#r2) and (77 is not vacant) and (3 is not vacant)
then A3 = N3 U {N;}
(* PHASE 2: Vacant Terminal/Abutment Assignment *)
for each N; = (tr,2,,try2,) € N2 do (* Type II nets *)
V(NJ) = {tf'_lil ) t?"ziz}
for each Nj = (tr,2,,try2,) € N3 do (* Type III nets *)
AN;)={ala€ A,z <a<x}
ASSIGN= ASSIGN-ABUTMENTS(N3, A)
(* PHASE 3: Net Selection *)
N3 =N3;N3=0
for each N; = (tr,z,,try2,) € N do
Nj1 = (tryzrs try Al)
Nj2 = (tryafj]s traza)
N3 == Ns U {hrjl,sz}
B = FIS(MV;, N3, N3)

(* PHASES 4, 5, and 6: Over-the-Cell Routing, Channel
Segment Assignment, and Channel Routing *)
OVER-THE-CELL-ROUTE(B)
C = ASSIGN-CHANNEL-SEGMENTS(B, \)
CHANNEL-ROUTE(C)

end.

Figure 10.20: Algorithm WISER.
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for PRIMARY I benchmark, all three models TBC, CTM and MTM, generate
channelless layouts, however, TBC layout has minimum area due to smaller
layout width.

10.1.4 Multilayer OTC Routing

With the advent of multi-layer processes more OTC area is now available for
routing and hence, further reduction in the layout height can be accomplished.
Bhingarde, Madhwapathy, Panyam and Sherwani [BMPS94] presented an ef-
ficient four layer OTC router, for a cell model similar to TBC, called Arbitrary
Terminal Model(ATM). In this cell model, the terminals can be placed at any
arbitrary locations in the cell. Freed from fixed terminal placement restrictions,
cell designers can aim to design with minimum width. Figure 10.21 shows ATM
based designs. The routing algorithm is based on the following four key steps;
(1) The nets spanning multiple rows are decomposed into net segments belong-
ing to single rows. All the terminals belonging to a single row are connected
by a single horizontal metal segment, and a terminal is selected on each seg-
ment for completing the net connectivity. (2) Generation of intervals for same
row and critical nets. (3) Interval assignment and same row routing and (4)
Selection of an appropriate position for placing the same row and critical net
intervals in each cell row. This approach was further generalized so that it can
be used not only for different cell models, but also for full custom layouts and
thin film MCM’s.

10.1.5  Performance Driven Over-the-cell Routing

Despite the dramatic performance of OTC routers, a major shortcoming of
the existing routers is the increase in the total wire length and the length of
the longest net. Careful analysis of existing results shows that the total wire
length may be increased by as much as 20% in [CPL93] and 35% in [HSS93].
Although no results on wire length are reported, it is very likely that the net
length also increases in case of [LPHL91]. However, it is possible that the
net length in [LPHLOI1] is less than the corresponding net lengths reported
in [CPL93, HSS93]. This may be due to the fact that the main objective of
their router is to minimize the number of routing tracks used in the over-the-cell
area, as well as in the channel.

Natarajan, Holmes, Sherwani, and Sarrafzadeh [NSHS92] presented a
three-layer over-the-cell channel routing algorithm (WILMA3) for high perfor-
mance circuits. This router not only minimizes the channel height by using
over-the-cell areas but also attempts to route all nets within their timing re-
quirements. This algorithm is based on two ideas. Firstly, it optimizes the track
assignment of each net with respect to delay. It identifies the track bound for
each net which ensures that the wire length is no greater than the length of
the net if routed in the channel. Using this track bound, nets are selected
for over-the-cell routing. Secondly, 45° segments are used to route the nets
over-the-cells to further reduce the net length.



10.1. Over-the-cell Routing 399

vDD
. » . - = .
.
L] -
L)
L]
GND
(a)
. .
L
. .
-
-
L
. .
.
. .
. . .
. .
.
-
. . .
. " .
. .
. - M
.
. . .
.
(b)

Figure 10.21: ATM based designs (a) Standard Cell (b) Full Custom

The basic idea of the algorithm is as follows: all the multi-terminal nets are
decomposed into two-terminal nets and classified. Then weights are assigned to
each net. The weight of a net intuitively indicates the improvement in channel
congestion possible if this net can be routed over the cells. A channel router
is then used to obtain the channel density (d.) if routed in the channel. For
each net N;, track in which N; is routed is recorded. An over-the-cell router
is used to obtain the channel density (d,) for over-the-cell routing. For each
net NV;, the track bound k; is computed, which ensures that if the net is routed
over-the-cell at a track less than or equal to k;, it will have a wire length less
or equal to the net length when routed in the channel. This is based on the
estimated channel heights d. and d,. Among all the nets which are suitable
for routing over the cells, four (two) maximum-weighted planar subsets are
selected, subject to the track bound constraint for the three-layer (two-layer)
model. Once the nets are selected, a set of vacant terminals (vacant abutments)
in the case of Type II (Type III) nets are assigned to each net N; depending
on its weight. These vacant terminal/abutment locations will later be used to
determine an over-the-cell routing for IV;. Over-the-cell routing is done with
45° segments and rectilinear segments. In order to avoid design rule violations,
any net NN; routed over-the-cell on track ¢; must contain a vertical segment of
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length p; before 45° segments can be used. The net segments that have not
been routed in the area over the cells are routed in the channel. After the
channel routing is done the channel density (dg) due to over-the-cell routing of
nets is obtained. If dp > d,, d, is set equal to dg and the process is repeated.

The iterative process mentioned above takes place very rarely as for most
examples the algorithm can complete the routing using no more tracks than
d,. However, in cases when dy is indeed greater than d,, it has been observed
that it is usually one or at most two tracks.

10.2 Via Minimization

Vias are necessary to establish multi-layer connections. Many routers use a
simple reserved layer model and produce routing solution with a large number
of vias. However, there are numerous reasons for minimizing the number of
vias in a layout:

1. In integrated circuit fabrication, the yield is inversely related to the num-
ber of vias. A chip with more vias has a smaller probability of being
fabricated correctly.

2. Every via has an associated resistance which affects the circuit perfor-
mance.

3. The size of the via is usually larger than the width of the wires. As a
result, more vias lead to more routing space.

4. Completion rate of routing is also inversely related to the number of vias.

Despite all these reasons, existing routers and design tools consider the min-
imization of the number of tracks in channel routing, completion of switch-
box routing, and wire length minimization as their primary objectives. Via
minimization is either completely ignored or de-emphasized. As a result, via
minimization came as an ‘afterthought’ in routing.

Before discussing the via minimization problem in detail, let us define some
related concepts. A plane homotopy (also called a sketch) consists of a set
of simple curves in the routing region. The two endpoints of a curve are the
terminals of a net. Two curves may intersect at a finite number of points, i.e.,
overlap of wires is not allowed. A k-layer homotopy (or simply a homotopy) is
obtained by mapping pieces of the curves of the plane homotopy into one of the
k layers. Vias are established at points where a curve changes layer and no two
distinct curves intersecting on the same layer (see Figure 10.22 for two different
homotopies of the same problem). If the topology of the plane homotopy is
fixed, then the problem is called CVM. In other words, in CVM problem, we
are given a set of wire segments (the placement of wire segments has already
been determined by some router) and k layers for routing. The problem is to
assign each segment to one of the layers without changing the topology so that
the number of vias required is minimized. In UVM problem, the placement and
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Figure 10.22: Two homotopies of the same problem.

the layer assignment of segments are not given. The problem is to both place
the segments and also assign the layers so as to minimize the total number
of vias. In other words, UVM is an integrated approach to routing and via
minimization.

Intuitively, the UVM problem is harder than CVM problem. This is so
because each UVM has many different homotopies, each resulting in a different
optimal number of vias. Thus solving the UVM problem requires finding such
a homotopy, which leads to a global minimum number of vias. In the following
sections, we discuss both the CVM and the UVM problem.

10.2.1 Constrained Via Minimization Problem

In multi-layer routing problems, vias are required when two nets are crossing
each other on a single layer. A via candidate is a maximal piece of wire, that
does not cross or overlap with any other wire, and can accommodate at least
one via. A wire segment is a piece of a wire connecting two via candidates. A
wire segment cluster (or simply cluster is a maximal set of mutually crossing
or overlapping net segments. For example, Figure 10.23 shows an instance of
CVM problem. The points other than terminals, where two or more segments
of a net meet and are electrically connected are called junctions. The number of
segments which meet at a particular junction is referred to as junction degree.
A crossing is a point where two net segments of two different nets intersect.
A layer assignment is valid if no two segments of two different nets cross at a
point in the same layer.

A routing solution is called a partial routing solution if the physical locations
of the net segments is given, however, the layer assignments are not specified.
Also, a valid layer assignment must exist for a partial routing solution. A
complete routing solution consists of a set of net segments, a set of vias, and a
valid layer assignment which correctly realizes the interconnection requirements
specified by the netlist. A valid layer assignment for Figure 10.23 is shown in
Figure 10.24.

Given the above definitions, the CVM problem can be formally stated as



402 Chapter 10. Over-the-Cell Routing and Via Minimization

Cluster 1
1 Possible via
2 | location
i d.. —
iF—= 3 e -
a’|b l
: L. Cluster2 5
J oL +- CE‘ — 4
k c —a— 5
Cluster 4 ] - i N———
| o ]
.......... . o..[p
a0 - . 7
S = 'l\\
T T T Cluster 3
7 4 5 6 2= 1

Figure 10.23: A CVM problem instance.

Figure 10.24: A valid layer assignment.
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follows. Given a partial routing solution for a particular routing problem on k
layers, find a complete routing solution with minimum number of vias for the
corresponding partial routing solution. Since the CVM problem is to assign net
segments to layers, the problem is also called the layer assignment problem. We
use the terms layer assignment and complete routing solution interchangeably.

In 1971, Hashimoto and Stevens [HS71] first formulated the two-layer CVM
problem as a graph-theoretic max-cut problem. The problem was initially
thought to be NP-complete which led other researchers to develop heuristic
algorithms [CKS81, SV79]. In [SV79], Stevens and VanCleemput used a sim-
ilar but more general graph model than Hashimoto and Stevens model to
develop heuristic algorithm for the two-layer CVM problem. Ciesielski and
Kinnen [CKS81] proposed an integer programming method for the same prob-
lem. Chang and Du [CD87] developed a heuristic algorithm by splitting
vertices in a graph. In 1980, Kajitani [Kaj80] showed that the two-layer CVM
problem can be solved in polynomial time when the routing is restricted to a
grid-based model, and all the nets are two-terminal nets. Kajitani identified
the net segment clusters in a layout and showed that the graph in Hashimoto’s
model is planar. Kajitani’s result encouraged other researchers to look for a
polynomial time algorithm for more general case. In 1982, Pinter [Pin82] pro-
posed an optimal algorithm for two-layer CVM problem when the maximum
junction degree is limited to three.

10.2.1.1 Graph Representation of Two-Layer CVM Problem

In this section, we first describe the graph-theoretic representation of the
two-layer CVM problem formulated by Pinter [Pin82]. We also describe the
model presented by Naclerio, Masuda and Nakajima. Note that in each cluster,
once a wire segment is assigned to a certain layer, layer assignment of the rest
of the cluster is forced. Thus there are only two possible ways to assign the wire
segments in a cluster to layers. With a prescribed layer assignment, a cluster
is said to be flipped over, if all the wire segments in the cluster are reassigned
to the opposite layers.

Given a (partial) routing problem, a cluster graph G = (V, E) can be de-
fined, where

V = {v; | v; corresponds to cluster i} and
E = {(v;,v;) | clusters i and j are connected to at least one via candidate}

The cluster graph for the layout in Figure 10.23 is shown in Figure 10.25.

If a complete routing solution is given, the weights can be assigned to the
edges of the cluster graph. The weight w(e) associated with each edge e € E of
the cluster graph is defined as follows. Let p be the number of via candidates
connecting the two clusters incident to e, and let g be the number of vias
introduced by the known layer assignment connecting the two clusters. Then
w(e) = 2g — p. In other words, the weight indicates the via reduction that can
be achieved due to flipping over either one of the two clusters. The weights
corresponding to the solution in Figure 10.24 are shown in Figure 10.25.
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Figure 10.25: Cluster graph.

An arbitrary layer assignment L can be obtained from a known layer as-
signment Lo by flipping over a set of clusters. Let X be the set of clusters
which are flipped over in Lg to obtain L. If X consists of just one cluster v,
then the change in the number of vias is equal to the weights of all the edges
incident on v. In a general case, the net change of vias is equal to the weights
of edges between the sets X and V — X. This is due to the fact that any two
clusters u,v € V (oru,v € V — X ), the via count between the clusters u and v
remains unchanged. However, for u € X and v € V —z, if e = (u,v) € E then
the via count is reduced by w(e). Let g(L) and q(Lg) be the numbers of vias
introduced in the layer assignments L and Lg, respectively. Then

WD =qle)~ Y wle)

e€E(X,V-X)

where E(X, V — X) is a cut separating X and V — X, i. e., the set of edges
connecting vertices in X and vertices not in X. The above equation is due to
the fact that for any two clusters both in X or both in V — X, the via count
between the two clusters remains unchanged, but for two clusters, one in X
and one in V — X via count is reduced by w(e). In order to minimize the via
count (L), we want to find a cut E(X,V — X) which maximizes its weight
2 ecE(x,v—x) w(e), This problem is equivalent to the max-cut problem. Note
that the edge weights w(e) can be positive or negative, but a maximum cut
always has non-negative weight since X can be empty and )} w(e) = 0 for
X = ¢. In case that a maximum weighted cut has weight 0, Lg is an optimal
layer assignment with minimum number of vias. For the cluster graph shown
in Figure 10.25, the vertex sets {2, 4} and {1, 3} determine the maximum cut
of total weight 3. As a result, three vias can be reduced to produce a minimum
via routing by flipping over clusters 2 and 4. The minimum via routing is
shown is Figure 10.26.

Note that the cluster graph is planar if the junction degree is at most three.
In planar graphs the max-cut problem is polynomial time solvable [Had75].
Therefore, the via minimization problem can be solved in polynomial time if
the junction degree is restricted to at most three.

In 1989, Naclerio, Masuda, and Nakajima [NMN89] showed that without
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Figure 10.26: Minimum via routing.

any restriction on the maximum junction degree, the CVM problem is NP-
complete, by showing a polynomial time transformation from the NP-complete
planar vertex cover problem [GJ79]. They also show that the problem is NP-
complete, even when one or more of the following restrictions are made.

1. The layout must be grid-based.
2. Vias can be placed only in the junctions.
3. The maximum junction degree is limited to six or more.

In 1987, Naclerio, Masuda, and Nakajima [NMNS87] presented a different
graph representation of the CVM problem for gridless layouts. In this rep-
resentation, also the maximum junction degree is restricted to at most three.
Given a partial routing solution, a crossing graph G = (V, E) is defined as fol-
lows: Each vertex v € V' corresponds to a crossing of two wire segments of two
different nets in the partial routing. Two vertices v;,v; € V' are adjacent only
if there is an wire segment connecting the crossings corresponding to v; and
v; in the partial routing. Figure 10.27(b) shows the derived crossing graph G
corresponding to the partial routing of Figure 10.27(a). It is easy to see that
the crossing graph defined above is planar. Each face, of the planar crossing
graph is a fundamental cycle. If that cycle has an odd length, then we call
that face an odd face. Otherwise the face is called an even face. Since each
edge corresponds to a wire segment in the partial routing and each vertex to a
crossing, the wire segments corresponding to edges that make up a fundamen-
tal cycle in the graph must be assigned to alternating layers to obtain a valid
layer assignment. For an even face, all the wire segments corresponding to the
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(a) (b)

Figure 10.27: Partial routing and corresponding crossing graph.

edges can be assigned to alternating layers, thus no vias are required for for
that face. Consider the example shown in Figure 10.27. The graph consists of
just one even cycle, and the segments a, b, ¢, and d can be alternately assigned
to layers 1 and 2 to get a solution with no vias. On the other hand, if the graph
contains an odd cycle, then the wire segments corresponding to the edges of
that cycle cannot be assigned to alternating layers to obtain a valid routing
without vias (see Figure 10.28(a) and (b) for an example of odd face). Note
that each odd cycle require at least one via to obtain a valid routing.

Thus, a partial routing solution can be routed with no vias if and only if
the corresponding crossing graph does not contain any odd faces. That is if
the crossing graph is bipartite. In case the graph contain odd faces, the wire
segments requiring vias can be marked and the corresponding edges in the
graph can be removed and two faces sharing that edge can be merged. If the
remaining graph is odd cycle free, then no further vias would be required to
route the wire segments in the remaining graph. Thus in order to find the
minimum number of wire segments that require vias, it is necessary to find the
minimum number of edges such that the removal of those edges results in a
bipartite subgraph.

Note that the problem is also equivalent to find a maximum cut the planar
crossing graph. Hadlock’s algorithm [Had75] can be used to find the maximum
bipartite subgraph from a planar graph. The algorithm presented by Hadlock
removes the minimum number of edges from the graph to remove all the odd
cycle by forming the dual of the planar graph.

The crossing graph can be extended to handle multiterminal nets as long
as the junction degrees are restricted to at most three. In that case, each
junction is also represented as a vertex in the crossing graph. The details of
the description may be found in [NMNS§7].

All the optimal algorithms mentioned above are based on Hadlock’s maxi-
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Figure 10.28: Example of an odd face in the crossing graph.

mum cut algorithm for planar graphs [Had75]. Since Hadlock’s algorithm re-
quires finding all-pair shortest paths and finding a maximum weighted matching
of a dense graph, all the algorithms have time complexity O(n%), where n is
the total number of net segments.

In 1988, Kuo, Chern, and Shih [KCS88] presented an O(n®/?logn) time
complexity optimal algorithm for the CVM problem.  The algorithm they
proposed was based on Pinter’s graph model. In 1990, Barahona [Bar90] also
presented a simpler O(n%/2logn) time complexity optimal algorithm for the
two-layer CVM problem.

10.2.2 Unconstrained Via Minimization

As mentioned before, the unconstrained via minimization (UVM) problem
(also known as topological via minimization (TVM) problem) is concerned with
finding a plane homotopy of wires so that the total number of vias are min-
imized [CL91, Hsu83b, LSL90, Sad84, RKN89, SL.89a, SHLI90]. The physical
dimensions of the wires, terminals, and vias are not considered in the UVM
problem. The general TVM problem in k layers (k-TVM) may be stated as
follows. Given a set of nets, number of layers k and terminal locations, find
a k-layer topological routing solution that completes the interconnections of
all nets using the minimum number of vias. In weighted version of k-TVM
problem (k-WTVM), each net is assigned a positive weight which is a measure
of the priority of the net. The weight of a via represents the weight of the
corresponding net. The problem is to minimize the total weight of vias used in
the routing.

The TVM problem was first introduced by Hsu in [Hsu83b], and it was
conjectured that TVM problem is NP-hard. Hsu considered a simple 2-TVM
problem for two-terminal nets and formulated the problem using circle graphs.
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It was shown that the 2-TVM problem is equivalent to finding a maximum
bipartite subgraph in the corresponding circle graph. The independent sets
of the bipartite subgraph can be routed in two layers without any vias. The
remaining nets can be routed using vias. This result established the fact that
TVM problem can be solved by routing maximum number of nets without any
vias and the rest of the nets using as few vias as possible.

Marek-Sadowska [Sad84] proved that the TVM problem is NP-complete.
Following theorem was also proved by Marek-Sadowska for two-terminal net
TVM problems:

Theorem 27 There exists a solution to an arbitrary instance of topological via
minimization problem such that each net uses at most one via.

The above theorem shows that the TVM problem can be solved by maximizing
the number of nets that can be routed without any vias (i.e., in planar fashion).

In 1989, Sarrafzadeh and Lee [SL89a] showed that the problem of finding
a maximum bipartite subgraph in a circle graph is NP-complete which in turn
proves that even a simple 2-TVM problem is NP-complete. As a result, several
special classes of the TVM problem have been considered. Sarrafzadeh and
Lee [SL89a] and Cong and Liu [CL91] considered the crossing-channel TVM
problem. In the crossing-channel TVM problem, the routing region is a simple
channel. All the nets are two-terminal nets and no net has both of its terminals
on the same boundary. Crossing-channel k-TVM and k-WTVM problems are
solvable in polynomial time [CL91, LSL90, RKN89, SL89a].

10.2.2.1 Optimal Algorithm for Crossing-Channel TVM Problem

Note that a crossing channel is equivalent to a matching diagram and its
permutation graph can easily be found (see Chapter 3). As a result, the prob-
lem of finding maximum independent sets in permutation graphs become a key
problem. Sarrafzadeh and Lee [SL89a] showed that the problem of finding a
maximum 2-independent set in a permutation graph can be solved in polyno-
mial time. Cong and Liu [CL91] showed that the problem of finding a maximum
k-independent set in a permutation graph can be solved in polynomial time.

Given a crossing channel consisting of a set of nets N' = {Ny, Na, ..., N,},
the TVM problem can be solved by first finding a maximum k-planar subset of
nets. The k-planar subset of nets can be routed in k layers without any vias.
Then using Theorem 27, the remaining nets can be routed in any two adjacent
layers using one via per net.

We now show how the nets can be routed using one via per net by an
example of the 2-TVM problem. Let A* be a maximum 2-planar subset of
nets for the given problem. Without loss of generality, assume A'™* = S} U S},
where S7 = {N1,Na,...,Np}, S5 = {Npt1,Ng42,..., Np+q}. Note that any
net Ny € N = N* must cross nets in S; and in S3. Since S} is planar, nets in
St can be assigned to layer 1. The p nets in layer 1 partition the region into
p+1 subregions called panels Xo, X;,..., X, from left to right, where N; € S
separates regions X;_; and X;. Similarly, nets S; can be assigned to layer 2
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Figure 10.29: A topological routing of a net using one via.

to form g +1 panels, denoted Yo, Yi,...,Y; from left to right. Figure 10.29(a)
shows planar routing of two sets S; and S3 on layer 1 and layer 2, respectively.

Assume that a net Ny € N* and N, = (z4,y;) is in panel (X;,Y;). Without
loss of generality, let us assume that z; lies in panel X; and y; lies in panel Y.
Consider placing a via v; in panel Y3 and connect z; to v; and v to y:. Let
the segment connecting z; to v; be denoted by [z, v:] and let v; be in panel
X, for some I. Without loss of generality, assume that { > j and [z, v:] be
assigned to layer 1. The nets Njy1,...,NN; on layer 1 that ‘intersect’ [z¢,v:]
are ‘pushed’ to right, thereby, enlarging the panel X; (see Figure 10.29(b)).
The segment [vs,¥:] can be assigned to layer 2 without any difficulty, since
it lies totally within panel Y. If there is more than one net to be routed,
the above mentioned steps can be repeated to route all the nets using one via
per net. The nets can be routed from left to right in O(n) time. Since the
maximum k-independent set in a permutation graph can be found in O(kn?)
time. Therefore, the total complexity is dominated by the problem of finding
maximum k-planar subset of nets. Thus we conclude,

Theorem 28 An optimal solution to a crossing-channel TVM problem can be
found in O(kn?) time.

10.2.2.2 Approximation Result for General k-TVM Problem

If the routing region is more general than a channel, then the two-terminal net
k-TVM problem becomes NP-hard. This is due to the fact that the circle graph
must be used to represent the problem instead of simpler permutation graph.
The k-TVM problem is equivalent to finding a maximum k-independent set in
a circle graph. In chapter 3, we have presented an (1— (1 - %)’“)-approximation
algorithm for maximum k-independent set in circle graphs. Using that result,
the following theorem can easily be proven:

Theorem 29 Given a set of nets N = {N1,Ns,...,N,} in a k-layer routing
region, let N* be the maximum k-planar subset of nets in N', and N' be the
k-planar subset of nets found by taking one maximum planar subset at a time,

then IN"| > (1 — (1 — L)¥) x |A?].
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Based on Theorem 27 and Theorem 29, we conclude,

Theorem 30 Given a set of nets N = {N1, Na,...,Np} in a k-layer bounded
region, the k-TVM problem can be approximated with with at most (1 — -,15)’“ X
IN*| more vias than the minimum number of vias, where where N* the maxi-
mum k-planar subset of nets in N.

10.2.2.3 Routing Based on Topological Solution

Since it appears that the CVM problem does not offer enough flexibility for
via minimization, the topological routing might offer a good starting point as
vias are already minimized. It is easy to see that minimum-via topological
routing often uses very long wires for some nets and causes high congestion in
the routing region. Since the geometric routing problem has fixed area, it may
not be possible to transform a high congestion topological routing solution to
geometric routing solution. Therefore, a topological routing solution is needed
that is guaranteed to be transformable into an actual geometric routing solu-
tion. This can be achieved by allowing some extra via’s to keep the topology as
close to the actual geometric solution as possible. In this way, the final topo-
logical routing solution can be easily transformed into actual geometric routing
solution. We denote this problem as routable topological via minimization prob-
lem in k layers (k-RTVM). The major difference between the solutions of TVM
and RTVM problems is that the solution of RTVM problem is guaranteed to
be transformable into actual geometric routing.

In [HS91], Hossain and Sherwani presented a graph-theoretic algorithm
to solve 2-layer routing problem based on topological solution. The algorithm
consists of two different phases. The first phase of the algorithm finds a solution
to 2-RTVM problem. In the second phase, the solution to 2-RTVM problem is
transformed into actual geometric routing.

The algorithm starts with finding a 2-planar subset of nets. Each planar
subset is routed in a separate layer to form panels. If the panels on two layers
are projected on a single layer, the panels intersect and form pseudo-rectangular
regions. The remaining nets are topologically routed by assigning nets to the
regions keeping the topology as close to the actual routing as possible. The
topological routing of the nets is done by finding a weighted shortest path
in the corresponding region adjacency graph defined from the regions. In the
region adjacency graph, each vertex corresponds to a region and two vertices
are adjacent if their corresponding regions share a boundary. Once the nets are
topologically routed, a geometric routing is obtained by iteratively imposing
grid onto each region.

10.3 Summary

The layout area for standard cell design can be reduced by minimizing the
channel height. Over-the-cell routing has been successfully used to achieve
dramatic reductions in the channel heights. In three-layer technology, it is
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possible to achieve even a channel-less layout. Several algorithms for over-the-
cell routing have been presented. For high performance circuits, an algorithm
has been presented which minimizes the layout height without sacrificing the
performance. A significant research is needed to develop new cell models and
associated over-the-cell routers to achieve the channel-less layouts for high den-
sity circuits.

Via minimization is one of the most important objectives in the detailed
routing. There are two different approaches to minimize the number of vias.
In constraint via minimization problem, the topology of the routing solution is
fixed. Vias can be minimized only by reassigning the net segments to different
layers. On the other hand, in unconstraint via minimization problem, the
objective is to find a routing topology with minimum number of vias. Since
the topology in UVM problem is not fixed, the UVM problem allows much
flexibility than that of the CVM problem. The UVM approach, however, does
not take into consideration the routing constraints; as a result, UVM solutions
are not practical. Since the UVM approach allows a significant reduction on the
number of vias and as the technology is improving and more and more layers
are becoming available, it is expected that topology based routing solution will
be more competitive.

10.4 Exercises

1. Given, (a) a single layer rectangular routing region R which has K tracks
and two rows of terminals; one on top side and another on the bottom
side and (b) a set of two-terminal nets . Give an efficient algorithm to
find a maximum subset of A~ which can be routed in R.

2. More utilization of the over-the-cell area is possible if we allow an addi-
tional net type (type IV). Net N; = (tr,z,,trz,) 1S @ type IV netif ry#rs,
neither ¢m4, NOr ts,, is vacant, and there exists two vacant terminals
trizs and tr g, With 1 < 23 < T2 and 21 < 4 < T2 (see Figure 10.30(a)).
Note that Type IV nets are not constrainted to use abutments, however,
they compete with the type Il and type III nets for the usage of vacant
terminals. Modify WISER to use type IV nets in addition to type I, II
and III nets.

3. Further utilization of the over-the-cell area is possible if an additional net
type (type V) is allowed. Net N; = (tr2;,trozs ), &1 < X2 is a type V net
if r1#7r2, neither tsz, nor tsa, is vacant, and there exists two vacant
terminals ¢, 5, and ¢, With 23 < z; and z4 < z; or 3 > z2 and
z4 > z2. Note that from Figure 10.30(b) type V can be used for taking
nets away from the congested areas, however, it increases the net length.
Modify WISER to use type V nets in addition to type I, II, III, IV nets.

4. Given, (a) a single layer rectangular routing region R which has a height of
K tracks, a terminal row on its bottom boundary, and a set of rectangular
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(a)

(b)

Figure 10.30: (a) A type IV net. (b) A type V net

blockages and (b) two-terminal nets . Give an efficient algorithm to find
a maximum subset of A” which can be routed in R.

In three-layer technology, when vias are allowed in over-the-cell region,
then the over-the-cell channel routing is similar to 2-layer channel routing
in over-the-cell area and 3-layer channel routing in channel area. For this
case, develop a greedy router that can simultaneously perform channel
routing as well as over-the-cell routing.

In many cell libraries the entire metal layer (M2) is not available for
routing. Instead, it has several blockages representing the routing within
the cell. Also, the terminals may not be aligned in a row. In this case,
the nets that are to be routed in the channel need be brought to the
boundaries of the cell using the available routing regions in M2. Develop
an algorithm for this problem.

In [DMPS94] planar over-the-cell routing algorithm for two terminal nets
was presented. Extend the algorithm to multi-terminal nets.

Prove that 2 layer planar over-the-cell routing problem is NP hard.
O(kn?), where k is the number of tracks available in over the cell region
and n is the number of nets.

Given the partial routing in Figure 10.31, do the following:
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Figure 10.31: A routing instance.

a. Find all of the via candidates. Note that if a segment spans more
than one gridline, a via can be placed in that segment.

b. Find any valid layer assignment.
c. From the layer assignment created in c, develop the cluster graph.
d. Find the max-cut of the cluster graph derived in c.

e. Reassign the layers to find the minimum via routing.

The performance of a chip can be improved by minimizing the number
of vias per net. Develop an algorithm which routes nets with one via per
net.

Develop a coloring based algorithm to 3 layer constrained via minimiza-
tion.

Develop an algorithm that minimizes the vias in a routing, by making
local changes in the routing with the use of maze patterns.

Develop a router for two-layer crossing channel routing problem to route
all the nets with at most one via per net. The basic idea of the algorithm
is the same as topological routing solution for crossing channels, how-
ever, instead of finding topological solution the router should find actual
detailed routing. The algorithm should first find a maximum 2-planar
subset of nets and route them on two different layers. Then route the
remaining nets using as many columns and tracks required.
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Figure 10.32: Spacing between tracks.

2 4 4 1 6 5 6 2 7 3 8 5

Figure 10.33: An instance of MSOP.

115. Develop a two-layer routing algorithm for crossing channel routing prob-
lems based on topological solution. The algorithm should first find a
maximum 2-planar subset of nets and route them on two layers to form
a pseudo grid. The remaining nets are to be routed on the pseudo grid
using a modified maze routing technique.

16. According to the design rules, the spacing between two adjacent metal
tracks needs be 3A. If the vias on adjacent tracks are aligned in a column,
the spacing between the tracks increases to 5A (see Figure 10.32). Develop
an algorithm that offsets the aligned vias to compact a channel.

17. Solve the instance of MSOP in Figure 10.33 for K = 3.
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