
Chapter 12

Compaction

After completion of detailed routing, the layout is functionally complete. At
this stage, the layout is ready to be used to fabricate a chip. However, due
to non-optimality of placement and routing algorithms, some vacant space is
present in the layout. In order to minimize the cost, improve performance and
yield, layouts are reduced in size by removing the vacant space without altering
the functionality of the layout. This operation of layout area minimization is
called layout compaction.

The compaction problem is simplified by using symbols to represent primi-
tive circuit features, such as transistors and wires. The representation of layout
using symbols is called a symbolic layout. There are special languages [Eic86,
LM84a, Mat85] and special graphic editors [Hil84, Hsu79] to describe symbolic
layouts. To produce the actual masks, the symbolic layouts are translated into
actual geometric features. Although a feature can have any geometric shape,
in practice only rectangular shapes are considered.

The goal of compaction is to minimize the total layout area without violat-
ing any design rules, maintaining good layout practices and without violating
designer specified constraints. The last two objectives are usually motivated by
performance verification. The area can be minimized in three different ways:

1.

2.

3.

By reducing the space between features: This can be performed by bring-
ing the features as close to each other as possible. However, the spacing
design rules must be met while moving features closer to each other.

By reducing the size of each feature: The size rule must be met while
resizing the features.

By reshaping the features: Electrical characteristics must be preserved
while reshaping the feature.

Compaction tools are sometimes used as a layout aid. That is, layout is
drawn in larger than minimum area. This reduces the design time. Compaction
is then used to get a close to minimum area layout.

450 Chapter 12. Compaction

Compaction is a very complex phase in physical design cycle. It requires
understanding of many details of the fabrication process such as the design
rules. Compaction is very critical for full-custom layouts, especially for high
performance designs. In this chapter, we discuss the compaction phase of
physical design cycle.

12.1 Problem Formulation

The layout of a VLSI circuit consists of geometric feature (mostly of rect-
angular shape). Each feature belongs to a circuit component or to a wire.
The compaction problem can be stated as: Given a set of geometric features

representing a layout. Each feature, has a mini-
mum size, dictated by the design rules. In addition, minimum separation
between features, between and for is also given.
The objective of compaction is to minimize the total layout area by moving
features close to each other and by resizing the features such that

where size and dist are size of and distance between and
after the compaction, where If the sizes of the features are

assumed to be fixed, then the problem is just to move the features closer to
reduce the layout area.

12.1.1 Design Style Specific Compaction Problem

The scope and impact of compaction on layouts differs depending on the design
style.

Full-custom design style: Compaction is very critical in full-custom
design style. After placement and routing, a large amount of space is left
vacant. The problem is exactly same as the one formulated above. This
is not true if significant part of layout is done by hand.

Standard cell design style: The cell heights are fixed in a standard cell
design. So the height of the layout can be minimized by minimizing
channel height. Thus a restricted type of compaction, called channel
compaction may be used. However, several channel routers produce very
compact routings which cannot be compacted any further.

Gate array design style: Since the position of gates is fixed, compaction
is not applicable to gate array designs, except to optimize wiring.

12.2. Classification of Compaction Algorithms 451

12.2 Classification of Compaction Algorithms

Compaction algorithms can be classified in two different ways. The first
classification scheme is based on the direction of movements of the compo-
nents (features): one-dimensional (1-D) and two-dimensional (2-D). In 1-D
compaction, components are moved only in x- or y-direction. As a result, ei-
ther x- or y-coordinate of the components is changed due to the compaction.
If the compaction is done along x-direction then it is called x-compaction.
Similarly, if the compaction is done along the y-direction, then it is called y-
compaction. Figure 12.1 shows an example of both x- and y-compactions. In
2-D compaction, the components can be moved in both x- and y-direction si-
multaneously. As a result, in 2-D compaction, both x- and y-coordinates of
the components are changed at the same time in order to minimize the layout
area. Figure 12.2 gives an example of a 2-D compaction.

The second approach to classify the compaction algorithms is based on the
technique for computing the minimum distance between features. In this ap-
proach we have two methods, constraint-graph based compaction and virtual
grid based compaction. In constraint-graph method, the connections and sep-

452 Chapter 12. Compaction

arations rules are described using linear inequalities which can be modeled
using a weighted directed graph (constraint graph) as shown in Figure 12.3.
This constraint graph is used to compute the new positions for the components.

On the other hand, virtual grid method assumes the layout is to be drawn
on a grid. Each component is considered attached to a grid line. The com-
paction operation compresses the grid along with all components placed on it
keeping the grid lines straight along the way. The minimum distance between
two adjacent grid-lines depends on the components on these grid lines. The
advantage of virtual grid method is that the algorithms are simple and can be
easily implemented. However, virtual grid method does not produce compact
layouts as compared to the constraint graph method.

In addition, compaction algorithms can also be classified on the basis of the
hierarchy of the circuit. If compaction is applied to different levels of the lay-
out, it is called hierarchical compaction. Any of the above mentioned methods
can be extended to hierarchical compaction. A variety of hierarchical com-
paction algorithms have been proposed for both constraint-graph and virtual
grid method. Some compaction algorithms actually ‘flatten the layout’ by re-
moving all hierarchy and then perform compaction. In this case, it may not be
possible to reconstruct the hierarchy, which may be undesirable.

12.3 One-Dimensional Compaction

In this section, we present two methods of one-dimensional compaction: Con-
straint graph based compaction and virtual grid compaction. One dimensional
compactors are repeatedly used in X and Y directions until no further com-
paction is possible.

12.3. One-Dimensional Compaction 453

12.3.1 Constraint-Graph Based Compaction

The constraint graph G = (V, E), is a weighted graph. Each vertex
represents a component while edges represent constraints. There are two types
of constraints that should be satisfied in the process of compaction: separation
constraints and physical connectivity constraints. Both separation constraints
and physical connectivity constraints can be incorporated into a graph rep-
resenting a 1-D compaction problem. A separation constraint between two
features can be represented using a weighted directed edge between the two
vertices, with weight equal to the minimum separation. For example, if the
two features A and B are required to be at least units apart from each other;
assuming that A is to the left of B, this rule can be written as
where refers to the x-location of component A. The inequality is represented
in the graph as an edge from A to B of weight (see Figure 12.4). Figure 12.5
shows the connectivity constraints that require two components to be within a
distance of each other. A physical connection can be represented as a cycle
of two edges. The condition can be rewritten as two constraints

and which appear in the graph as a pair of
constraints between each with weight – .

The constraint graph includes two additional vertices, L and R, which rep-
resent two physical boundaries (without the loss of generality, left and right).
L can be thought of as a source of the constraint graph, because all other
vertices are, explicitly or implicitly, required to the right of L. Similarly, R
can be considered as the sink of the graph. Figure 12.6 gives an example of a
constraint graph that includes source and sink vertices.

In the process of compaction when the elements are moved by the compactor
it is necessary that the original electrical connections be preserved. Most com-
pactors derive the connectivity from the overlapping regions in the original
layout. In the following, we discuss two types of connectivity constraints and

454 Chapter 12. Compaction

how can they be included in the constraint graph.

1.

2.

Wire-terminal connections: Connectivity constraints for wire-terminal
connections with horizontal wire, vertical wire, and wide vertical wire are
illustrated in Figure 12.7(a), (b), and (c) respectively. These rules ensure
good electrical connections (See Figure 12.8(a)) when compared with the
minimum overlap rules (See Figure 12.8(b)).

Wire-wire constraints: The connection between two wires is also cap-
tured into the graph in a similar way as it is captured for the wire-terminal
connections. Figure 12.9 shows good wire-wire connections in which wires
overlap by their complete width.

After the layout is compacted, a number of vertices could still be relatively
free to move. Therefore, other objectives can be used to determine coordinates
of these vertices, e.g., minimize the total length of the interconnect wires located
on specified layers to reduce resistance and capacitance [Sch83].

The longest path algorithm can be used to assign positions to the vertices
that minimizes the distance from the source to the sink, which is equivalent to
minimizing the layout width in the dimension of compaction.

12.3.1.1 Constraint Graph Generation

As discussed earlier, once the constraint graph is generated, the actual com-
paction is quite simple using the longest path algorithm. However, the first

12.3. One-Dimensional Compaction 455

456 Chapter 12. Compaction

step necessary in constraint graph compaction is to build the constraint graph.
The building of the constraint graph is the most time-consuming part of con-
straint graph based compaction and is in the worst case. This is due
to the fact that, in the worst case, there is an edge between every pair of
vertices in the constraint graph. Only a small subset of the potential edges
are actually needed for constraint graph compaction. A circuit component
group typically will only have spacing requirements with its nearest neighbors.
Many techniques for generating the constraint graph efficiently have been pro-
posed [HP79, Mal87]. In construction of a constraint graph, the connectivity
constraints are generated first. The connectivity constraints can be generated
by scanning all legal connections in the symbolic layout. The connectivity in-
formation is usually stored in a table and the compactor looks up the table to
generate all the constraints. Different types of connectivity constraints include
wire-wire, wire-via, wire-source connectivity constraints.

Separation constraints are generated once per compaction step. The con-
straint generation method used should ideally generate a non-redundant set of
constraints since the cost of solving the constraint graph is proportional to the
number of edges in the graph, or the number of constraints. Several constraint
generation algorithms have been proposed. In the following section, some of
the constraint generation algorithms will be discussed.

1. Shadow-Propagation Algorithm: A widely used and one of the
best known techniques for generating a constraint graph is the shadow-
propagation used in CABBAGE system [HP79]. The ‘shadow’ of a feature

12.3. One-Dimensional Compaction 457

is propagated along the direction of compaction. The shadow is caused by
shining an imaginary light from behind the feature under consideration
(see Figure 12.10). Usually the shadow of the feature is extended in
both sides of the features in order to account for diagonal constraints.
This leads to greater than minimal Euclidean spacings since an enlarged
rectangle is used to account for corner interactions. (See shadow of feature
in Figure 12.10).

Whenever the shadow is obstructed by another feature, an edge is added
to the graph between the vertices corresponding to the propagating fea-
ture and the obstructing feature. The obstructed part of the shadow
is then removed from the front and no longer propagated. The process
is continued until all of the shadow has been obstructed. This process
is repeated for each feature in the layout. The algorithm SHADOW-
PROPAGATION, given in Figure 12.11, presents an overview of the al-
gorithm for x-compaction of a single feature from left to right.

The SHADOW-PROPOGATION routine accepts the list of components
(Comp_list), which is sorted on the x-coordinates of the left corner of
the components and the component (component) for which the con-
straints are to be generated. The procedure, INITIALIZE-SCANLINE,
computes the total length of the interval in which the shadow is to be
generated. This length includes the design rule separation distance. The
y-coordinate of the top and the bottom of this interval are stored in
the global variables, top and bottom respectively The procedure, GET-
NXT-COMP, returns the next component (curr_comp) from Comp_list.
This component is then removed from the list. Procedure LEFT-EDGE
returns the vertical interval of component, curr_comp. If this inter-
val is within the top and bottom then curr_comp can possibly have a
constraint with component. This check is performed by the procedure
IN – RANGE. If the interval for curr_comp lies within top and bottom
and if this interval is not already contained within one of the intervals in

458 Chapter 12. Compaction

2.

the interval set, then the component lies in the shadow of component
and hence a constraint has to be generated. Each interval represents the
edge at which the shadow is blocked by a component. The constraint is
added to the constraint graph by the procedure ADD-CONSTRAINT.
The procedure UNION inserts the interval corresponding to curr-comp
in the interval set at the appropriate position. This process is carried out
till the interval set completely cover the interval from top to bottom or
there are no more components in Comp_list. The Figure 12.12(a) shows
the layout of components. The constraint for component A with other
components is being generated. Figure 12.12(b) shows the intervals in
the interval set as the shadow is propagated. From Figure 12.12(b) it is
clear that the constraints will be generated between components A and
components B, C, and D in that order. As component F lies outside
the interval defined by top and bottom it is not considered for constraint
generation. The interval generated by component E lies within one of
the intervals in the interval set. Hence, there is no constraint generated
between components A and E.

Scanline Algorithm: In [Mal87], Malik presented an efficient algo-
rithm based on scanline method. The scanline is an imaginary horizontal
(or vertical) line that cuts through the layout in x-compaction (or y-
compaction). An example of scanline is shown in Figure 12.13. The scan-
line data structure contains all the rectangles that are cut by this scanline.
The rectangles are stored in non-decreasing order of their x-coordinates
of the left boundaries. The scanline traverses from the top to the bottom
of the layout for x-compaction. Similarly, for y-compaction, the scanline
traverses from the left to the right of the layout. For x-compaction, as the

12.3. One-Dimensional Compaction 459

460 Chapter 12. Compaction

line passes over the top edge of a rectangle, the rectangle is added to the
scanline. Similarly, when the scanline passes over the bottom edge, the
rectangle is deleted from the scanline. Two lists are required to move the
scanline over the layout. One list contains rectangles in non-decreasing
order of their YTOP and one list contains rectangles in non-decreasing
order of their YBOTTOM. Let us denote the two sorted list as topsorted
and bottomsorted, respectively. The algorithm SCANLINE is shown in
Figure 12.14.

Note that the algorithm SCANLINE adds many redundant edges. A
redundant edge is the one that does not affect the longest path from
the source vertex to any other vertex in the graph. Hence the removal
of the redundant edge will not change the constraint graph. Consider
the example shown in Figure 12.15. If the distance between and

is less than the the distance between and plus the
distance between and then the constraint between and

is redundant thus can be removed. The scanline algorithm uses these
measures to remove redundant constraints.

12.3.1.2 Critical Path Analysis

After generation of constraint graph, the next step in constraint graph com-
paction is to determine the critical path through the graph. Let us explain the
role of critical paths in compaction. The goal of one dimensional compaction
is to generate a minimum width layout. The determination of minimum width

12.3. One-Dimensional Compaction 461

layout translates into a longest path problem. The longest path from source to
a vertex is then the coordinate of the vertex. The longest path problem can be
viewed as a shortest path problem by inverting the signs on the edge weights.
As a result, this problem is also called the critical path problem. The edges that
determine the minimum distance between the source and the sink form the crit-
ical path and vertices on the critical path are said to be critical. Tarjan [Tar83]
describes a variety of algorithms to solve longest path problems; many others,
including Lengauer [Len84], Liao and Wong [LW83] describe the application
of various longest path algorithms to compaction. These algorithms calculate
for all the vertices coordinates that are as small as possible. The worst case
complexity of these algorithms is O(|V| × |E|), where V is the set of vertices
in the graph and E is the set of edges. In [LW83], the complexity has been
reduced to L iterations, while the run time of each iteration is O(E). Where
L is the number of negative weighted edges. If the constraint graph has spe-
cial properties, more efficient algorithm can be used. In particular, for acyclic
graphs, the worst case complexity is O(|V| + |E|).

In practical layouts, the run times are almost linear in the number of layout
elements. This is due to locality of the graph, that is, most edges represent
very local constraints in the layout. In addition the number of edges that start
at a vertex is usually quite small.

The algorithms described above can be improved by using a divide and
conquer approach. The basic idea is to divide the graph in smaller subgraphs,
which can be solved independently. A strong component is a subgraph in which
there is a path from every node to every other node. Strong components are
formed by the connectivity constraints; all the features in a strong component
must move more or less together during compaction. If each strong component

462 Chapter 12. Compaction

is reduced to a vertex, then the resulting graph is acyclic. In addition, the
strong components can be assigned an ordering, which allows us to compute
the effect of one strong component on the next one. The source and sink
are modelled as separate strong components. Algorithms for finding strong
components are described by Even [Eve79]; the best algorithm has a worst
case time complexity of O(|V| + |E|). The number of strong components and
the number of vertices in strong components depend on the graph. In practical
layout designs, the strong components are rather small.

Another method of improving the critical path algorithms is by reducing
the total number of vertices and (or) edges of the graph. This reduction should
not change the solution space of the constraint graph, which means that that
all possible solutions that can be obtained directly or with reduction must be
the same. The vertices can be reduced by grouping all the vertices which must
have same relative positions. The edge reduction can be achieved by eliminating
redundant edges. An edge is redundant, if there exists a path between the two
vertices of the edge that does not contain the edge and which is longer (or has
the same length) as the weight of the edge.

There may be vertices in the graph that are not critical and therefore have a
range of legal positions. These vertices are said to have slack. Some secondary
criterion must be used to assign unique positions to these vertices; one common
objective is the minimization of total wire length in the cell. The compactor
can place vertices with slack in such a way to increase circuit performance,
to minimize wire length, to optimize fabrication yield, etc. Schiele [Sch83]
and Eichenberger [Eic86] discuss algorithms that can be used to minimize wire
length. Wire-length minimization significantly reduces the values of parasitic
features associated with wires [Sch85].

12.3. One-Dimensional Compaction 463

12.3.1.3 Wire Jogging

Both automatic jogging of wires and wire length minimization have received
much attention in the last couple of years. This is, in part, due to the re-
cent interest in channel compaction [Deu85]. One of the first approaches to
jogging wires was reported by Hsueh [HP79]. In this approach jogs in wires
were introduced at ‘torque’ points on a wire (see Figure 12.16). Wire jogging
had limited success because it could reduce the size in one direction while,
potentially, increasing the size in the other direction.

12.3.1.4 Wire Length Minimization

Features not on the critical path will typically find themselves pulled towards
a layout edge because they are given their minimal legal spacing. This tends
to increase wire length and reduce circuit performance.

One of the first methods used to reduce wire length was the ‘average slack’
method of Hsueh [HP79]. This approach uniformly distributes the empty space
in a circuit among the features that were not on the critical path. Burns [BN86]
presents a force-based heuristic that not only considers the effect of each wire
layer but it also considers the cumulative effect of multiple wires connecting
adjoining modules. This is effective in minimizing wires in an hierarchical
layout.

12.3.2 Virtual Grid Based Compaction

The virtual grid compaction is a structured approach to compacting layout.
The virtual grid is used to establish the relative placement of circuit features
and does not correspond to physical grid. In this approach, the compactor gives
locations to the virtual grid lines, not to the circuit component themselves.

464 Chapter 12. Compaction

Several compactors have been designed using virtual grid approach. Following
are the two widely used algorithms based on this approach.

12.3.2.1 Basic Virtual Grid Algorithm

In this method, each component is attached to a grid line. Consider the
example shown in Figure 12.17(a). Components A, B, and C are attached to
the first grid line, while D, E, and F are attached to the second grid line. In
the second step, the maximum necessary distance between any two grid lines
is computed. In our example, the distance between C and F is required to be
14. In other words, the grid lines can be at distance 14 to each other without
violating any design rules. In Figure 12.17(b), we show the compacted layout.
This process is repeated for all adjacent grid lines. X-Compaction is usually
followed by Y-Compaction. The basic advantage of virtual grid method is it is
fast.

12.3.2.2 Split Grid Compaction

In [Boy87], Boyer introduced split grid compactor which places distinct circuit
features that fall on the same virtual grid separately, splitting the virtual grids
where necessary. Split grid compactor uses a data structure that allows only
to store the grid points that are of interest. The grid points which contain
features are the ones added to the data structure. This allows fast access to
the circuit features.

Initially, the compactor identifies groups of circuit features falling on the
same virtual grid lines that need to be placed together. Local connectivity is
used to identify the groups. For example, consider a vertical virtual grid line.
There are two situations that might occur: features are connected by a vertical
wire segment or the features are connected by a vertical transistor. In any case,
the features are grouped together. Groups are identified by traversing each vir-
tual grid line. After the circuit features are grouped together, the compaction
is done in two passes: first the x-compaction and then y-compaction. A group
is first compacted by determining the spacing necessary for each component in
the the group. Then each group is placed independently. Features are spaced
with respect to the features in the neighboring groups. Consider the example
shown in Figure 12.18(a). We group A, B, and C together on the first grid line.
On the second grid we form two groups. The first group consists of D and E,
while the second just consists of F. Figure 12.18(b) shows the solution after
compaction.
Compression-Ridge Method: Compression-ridge method was first sug-
gested by Akers, Geyer, and Roberts [AGR70]. In this method, vertical and
horizontal regions of empty spaces, called compression ridges are formed. They
have the following properties:

1. Compression ridge is a constant width band of empty space stretching
from one side of the layout to the other side.

12.3. One-Dimensional Compaction 465

466 Chapter 12. Compaction

12.3. One-Dimensional Compaction 467

2.

3.

Compression ridge can intersect wires that are perpendicular to it. How-
ever, it cannot intersect those wires that are parallel to it.

The width of a compression ridge is such that when the space is removed,
no design rules should be violated in the resulting layout.

The example of compression ridge is shown in Figure 12.19. The compression
ridge is shown by the shaded region in Figure 12.19(a). In this technique,
these compression ridges are subsequently removed from the layout until no
more ridges are found. One method for finding the compression ridges is to
use the virtual split-grid method. The vacant space along the grid line can
be replaced by a rectangular compression ridge. The width of this ridge is the
minimum compression that can be achieved along the grid line. Figure 12.19(b)
shows the layout after removing the compression ridge. Note that compression
ridges are formed from one end of the layout to the other which in the worst
case is very time consuming. Therefore, an efficient algorithm is required to
find the compression ridges. Dai and Kuh [DK87b] proposed an
algorithm for finding compression ridges that allows the largest decrease in
layout width. One of the main advantages of the compression ridge method is
that the compaction can be broken into smaller steps.

12.3.2.3 Most Recent Layer Algorithm

In [BW83], Boyer and Weste presented a virtual grid compaction algorithm
called most recent layer algorithm. The algorithm consists of two different
passes: first in the x-direction, then in the y-direction. The diagonal checks
are done during the y-compaction. The algorithm does not require any back-
tracking and the time complexity of this algorithm is , where is the total
number of features in the layout.

468 Chapter 12. Compaction

For the x-compaction, each horizontal grid line has a set of reference lines
(‘pickets’), one for each layer, to keep track of the right edge of the most recent
placement of a mask feature on that grid line. Initially, a column is placed as
close to the picket as possible (without violating the design rules). The pickets
are then updated. If there is no feature in a layer for a certain column, the picket
position for that layer is not updated (it remains unchanged). To position a
mask feature in a layer, the left edge of the feature is used to determine the
necessary location of that layer with respect to picket. The right edge of the
feature is used to update the pickets. For an illustration, consider the example
shown in Figure 12.20. There are three different pickets for three layers, one
for metal, one for poly, and one for diffusion. Consider the x-compaction in
horizontal virtual grid line . We assume that features in columns 1, 2, 3 are
already placed and the pickets are updated. Now, the feature of the diffusion
layer has to be placed in column 4. Only the picket of diffusion layer will be
used to find the location of this feature. After placing the feature in its minimal
distance position, the picket in diffusion layer is updated to the coordinate of
the right side boundary of the feature.

The y-compaction is done in similar way. However, additional information
is necessary in order to handle the diagonal constraints. The left and right
edges, as well as the upper edges, of the mask features must be recorded in
order to do the diagonal checking.

12.4 Compaction

In [SSVS86], Shin, Sangiovanni-Vincentelli, and Sequin presented a new
compactor based on simulation of zone refining process. Although compactor
is based on simulation of an engineering process, it is a deterministic algorithm
and differs sharply from other simulation based approaches such as simulated
annealing and simulated evolution. The key idea is to provide enough lat-
eral movements to blocks during compaction to resolve interferences. In that
sense, this compactor can be considered compactor, since the
geometry is not as free as in true 2-dimensional compaction.

12.4. Compaction 469

The process of zone refining is used to purify crystal ingots. The basic
idea is to allow limited melting of the crystal and let purities drain out of the
crystal. The zone refining process starts with an already developed ‘impure’
crystal. As shown in Figure 12.21 (a), the crystal is slowly pulled through a
heating element to locally heat the crystal to melting temperature. At the exit
end of the heater, the material re-crystallizes. Since impurities are built into
the crystal lattice at a much slower rate than the crystal material, impurities
have tendency of being left out during re-crystallization process. That is, the
impurities are left in the molten state in the heated zone. Eventually, impurities
are drained out of one end of the crystal.

In terms of layout compaction, the algorithm starts with a layout. The
vacant space in the layout is considered the impurity. Starting from one side,
blocks are considered row by row and are re-arranged after they have been
moved across the open zone. During its movement in the free zone, the blocks
travel through the entire width of the layout and hence may be placed anywhere
along the boundary. In Figure 12.21(b), we show the process of compaction by
zone refining.

The algorithm maintains an XY adjacency graph. In an XY adjacency
graph, vertices represent blocks, while edges represent horizontal and vertical
adjacency. That is, two blocks have a horizontal edge if they share a vertical
boundary. Similarly, two blocks have a vertical edge if they share a horizontal
boundary. The labels on the edges represent the minimum allowable distance
between blocks. Four additional vertices are added to keep all the blocks within
the required bounded rectangle. Note that free space is ignored in computing

470 Chapter 12. Compaction

the neighborhood edges between blocks. Figure 12.22(a) an instance of problem
along with its XY adjacency graph in Figure 12.22(b).

Algorithm assumes that the input is partially compacted layout, which can
be obtained by two applications of a 1-D compactor. It maintains two lists
called floor and ceiling. Floor consists of all the blocks which are visible from
the top and may become a neighbor of future block. Ceiling is a list of all
blocks which can be moved immediately. That is, ceiling is the list of blocks
visible from the bottom. The algorithm selects the lowest block in the ceiling
list and moves it to the place on the floor, which maximizes the gap between
floor and ceiling. This process is continued until all blocks are moved from
ceiling to floor.

Let us illustrate the algorithm with an example in Figure 12.22. Since C is
the lowest block in the ceiling list, it is selected for the move. Figure 12.22(c)
shows that the gap is maximum at the boundary between blocks A and B.
Therefore C is moved between and A and B. The modified layout and the
XY-adjacency graph are shown in Figures 12.22(d) and (e) respectively.

12.5 Two-Dimensional Compaction

Recall that there are three different types of constraints imposed by the de-
sign rules that must be satisfied to obtain a valid layout. These constraints are
size constraints, overlap constraints, and separation constraints. Furthermore,
designer can impose extra constraints known as user defined constraints. Given
a symbolic layout consisting of rectangular features, all these constraints can
be written using linear constraint equations. Let us assume that for each block

two coordinates, and are given for the lower left corner and
the upper right corner, respectively. Let a block has height and width

then the size constraints can be written as:

Wires have a fixed width but variable length. A vertical wire with width
is specified by the constraints:

The constraints for the horizontal wires can be given in the similar way.
In the course of compaction, the algorithm must maintain appropriate con-

nections between blocks and wires and between wires. Wires on the boundary
of a block can slide along the boundary within the range specified by the user,
provided that no constraints are violated. The overlap constraints between a
block and a wire segment can be given as:

12.5. Two-Dimensional Compaction 471

472 Chapter 12. Compaction

Note that is connected to the right boundary of and the range is
(Figure 12.23(a)). The overlap between two wires and as shown in
Figure 12.23(b), can be specified as:

Next the separation constraints can be specified as minimum distance con-
straints between two non-overlapping features. If blocks and are not
supposed to overlap, they must be separated by a certain distance. There are
four possible cases: is on the right of at a distance of at least is on the
left of at a distance of at least is on the top of at a distance of at least

and is below at a distance of at least Thus, one of the following
must be satisfied.

Let and and are non-overlapping features
}. Thus to ensure that the design rules are satisfied, one of the four constraints
in must be satisfied.

Therefore, the constraints can be divided into two classes:

1.

2.

set of constraints, B, that must be satisfied, which include size, overlap
and user defined constraints.

set of constraints, D, that are divided into groups and at least one of the
constraints in each group must be satisfied.

12.6. Hierarchical Compaction 473

After the generation of constraints, the problem can be solved using in-
teger linear programming technique. However, the complexity of the linear
programming technique is exponential thereby making it impractical even for
a moderate size problem.

In [SLW83], Schlag, Liao, and Wong showed that the 2-D compaction
problem is NP-complete and gave a branch-and-bound solution for the problem.
However, again the complexity of the algorithm is in the worst case exponential.

12.5.1 Simulated Annealing based Algorithm

In [HLL88], Hseih, Leong, and Liu proposed a solution to 2-D compaction
using simulated annealing technique. Although this technique produces sub-
optimal solution, this is much faster than branch-and-bound and integer linear
programming technique. The layout can be represented by a valid set of con-
straints. A valid set of constraints is a subset E of constraints that contains all
the constraints from B and at least one constraint from D. We use the notation

where M contains exactly one constraint from each group of D. In
the simulated annealing algorithm, given a solution a move is defined
as selecting a group in D and exchanging the constraints in that group. Two
solutions and are said to be neighbors if can be obtained from
M by interchanging the chosen constraint in one of the groups of D. Clearly,
it is possible to go from one given solution to another by a sequence of moves.

12.6 Hierarchical Compaction

The compactors discussed in the previous sections, perform compaction on
layouts composed from a library of pre-defined features and wire segments.
Since the characteristics of the layout primitives other than their basic shapes
are typically exploited to generate compact layouts, it can be difficult to use
such system for hierarchical design.

Hierarchical compaction can be used for hierarchical designs to reduce the
space and computation time of the layout compaction. In the hierarchical
compaction, transistors, contacts, and modules are treated in the same manner.
In this section, we discuss one hierarchical compaction algorithm based on
constraint-graph generation.

12.6.1 Constraint-Graph Based Hierarchical Compaction

Given a hierarchical symbolic layout, hierarchical constraint graph is gen-
erated at each level of the hierarchy of the design from bottom up. Initially,
constraints are generated for all the leaf cells consisting of basic features. Each
leaf cell is compacted using the corresponding constraint graph and the bound-
ary of the compacted leaf cell is fixed. Once the leaf cell is compacted and the
boundary is fixed, the cell can be treated as a single cell in the next level in
the hierarchy and constraints can be generated for the cells in that level. The

474 Chapter 12. Compaction

compaction is carried out by generating constraints at each level. For an illus-
tration, consider the example of a hierarchical design shown in Figure 12.24.
The layout consists of two levels of hierarchy. In the leaf level, cells and
are compacted by generating their constraint graphs and as shown in
Figure 12.25. Once and are compacted, their layout is represented by a
vertex in the next level of the constraint generation as shown in the graph
in Figure 12.25.

The hierarchy of the design will be preserved if at each level, the boundary of
the compacted cells are kept rectangular. However, keeping the boundary rect-
angular does not produce a good solution. To get better results, the boundary
of the compacted cell at any level can be given any arbitrary rectilinear shape
and the constraint graph may be allowed to have multiple constraint edges be-
tween two vertices, specifying different separation constraints. However, this
approach does not preserve the hierarchy of the layout.

12.7 Recent trends in compaction

In this section, two new trends in compaction are briefly reviewed. These
include performance-driven compaction and compaction techniques for yield
enhancement.

12.7.1 Performance-driven compaction

In [OCK95], authors use an iterative parameterized LP formulation to model
a force-directed wire respacing scheme for compaction under timing constraints
and compaction under peak crosstalk constraints. Although it uses a dis-
tributed delay model that factors in the coupling capacitances of the nets,

12.7. Recent trends in compaction 475

some of the intuition behind the force-directed scheme is lost in translating the
two-dimensional optimization problem into a problem with a one-dimensional
objective function (delay/crosstalk) and a constrained penalty parameter asso-
ciated with the second objective (area).

In [WLLC93], a LP formulation is developed for timing constraints on crit-
ical paths (in addition to regular layout constraints), and then shows how to
solve them efficiently using a graph-based simplex algorithm. The delay model
assumes that the delay of a wire is proportional to its length. First, an LP is
used to find a tight upper bound on the delays of the timing critical paths by ad-
justing the wire lengths. Next, another LP is used to perform one-dimensional
compaction on the layout while ensure that the delay of each of the timing
critical paths remains less than the upper bound determined by the first LP.

12.7.2 Compaction techniques for yield enhancement

Chiluvuri and Koren [CRK95] developed a constraint-graph based compaction
strategy using empirical heuristic desired locations for objects not on critical
paths in the constraint graph to make the spacing between different elements
more uniform, in an effort to decrease the sensitivity of the layout to random
point defects.

476 Chapter 12. Compaction

Bamji and Malavasi [CM96] extended the work done by Chiluvuri and Ko-
ren by using a network flow based formulation for the layout respacing. The
formulation models objectives such as yield, crosstalk or wire length (or their
linear combinations) using a piece-wise linear convex cost function for the edges.

12.8 Summary

Compaction is a very important phase in physical design cycle. The ob-
jective of a compaction algorithm is to reduce the layout area. Research in
symbolic layout compaction has resulted in two major compaction strategies:
the constraint-graph based compaction and the virtual grid based compaction.
Constraint-graph based compactors usually produce smaller area layouts as
compared to the virtual grid compactors, while virtual grid compactors typ-
ically run faster. The speed of both type of algorithms can be improved by
using hierarchy of the layout.

12.9 Exercises

1.

2.

3.

4.

5.

†6.

‡7.

‡8.

For an instance shown in Figure 12.10, generate constraints using scanline
algorithm.

Develop an algorithm to remove the redundant constraints in a constraint
graph.

Symbolic layout of a single cell may described using a unit size. De-
velop an algorithm to produce a full-size layout of a cell from a unit-size
description by adding wires to the cell.

Extend the virtual grid based algorithm to include jog insertion if neces-
sary to reduce the layout area.

Extend the two-dimensional compaction to include jog insertion.

If two neighboring cells have to be connected, then the compaction al-
gorithm can stretch the cells such that their terminals to be connected
lie in the same x- or y-position. This process of stretching cells to align
terminals is known as pitchmatching. Design the necessary constraints to
handle the pitchmatching in a compaction algorithm.

Implement the zone refining algorithm for L-shaped blocks. Note that
rotation, flipping of blocks have to be taken into consideration.

Develop constraints for L-shaped blocks. Can we represent each L-shaped
block as a combination of two rectangles ? What additional constraints
are needed ?

12.9. Exercises 477

9. Consider the channel compaction problem. Channels are compacted in
the y-directions. Which channel routing algorithm produces the most
compactable solution ? Which channel router is easiest to adapt to inte-
grated channel routing and compaction ?

Bibliographic Notes
The first compaction algorithm called shear-line compaction was proposed by
Akers et al. [AGR70]. Symbolic layout and compaction were first combined
in the STICKS system [Wil78]. In [BN87], a constraint generation technique
for hierarchical compaction has been proposed. In [KW84], the compaction
problem was formulated into a mixed integer linear programming problem of a
very special form. Symbolic layout compaction with symmetric constraints was
considered in [OSOT89]. The symmetric constraint maintains the geometrical
symmetry of the circuit components during the compaction.

[SL89b, WLC90] present efficient two-dimensional layout compaction algo-
rithms. In [dDWLS91], a two-dimensional topological compactor with octag-
onal geometry is presented.

Algorithmic Aspects of one dimensional layout compaction are discussed
in [DL87a]. In geometrical compaction in one dimension for chan-
nel routing is considered. In [LV90], an 1-d compaction algorithm
is presented. [DL91] presents on minimal closure constraint generation for sym-
bolic cell assembly. [CH87] explains how to generate incremental compaction
spacing constraints. In [BV93], discusses a method for identifying overcon-
straints during hierarchical compaction. [Ono90] presents layout compaction
with attractive and repulsive constraints. It has been shown in [PDL97] that
the traditional problem of removing redundant constraints to yield the small-
est possible constraint graph in symbolic compaction is NP-hard. However,
if one is also allowed to add new constraints, the smallest possible constraint
graph can be obtained in polynomial time. In [DPLL96], a global strategy for
the elimination of positive cycles in overconstrained graph-based compaction
problems is presented. It uses new polynomial LP-based formulations that
are of independent interest and applicability by themselves. [Koc96] uses local
logic resynthesis specific to the FPGA architecture being compacted to perform
compaction. In [ASST97], a min cost flow based formulation of the compaction
problem (wire length minimization) is presented.

In terms of parallel algorithms, [SC96] presents a parallelization of the ” cut,
compact and merge” approach towards full-chip compaction. In [CTC94] a
parallel algorithm for integrated compaction and wire balancing on a shared
memory multiprocessor has been evaluated.

[Har91, BV92, Mar90, present several schemes for
hierarchical compaction and methods for dealing with large databases. In
[FCMSV92], an efficient methodology for symbolic compaction of analog IC’s
with multiple symmetry constraints is presented.

